
Freescale Semiconductor
The MPC8541E integrates a PowerPC™ processor core built on Power Architecture™ technology with system logic required for networking, telecommunications, and wireless infrastructure applications. The MPC8541E is a member of the PowerQUICC™ III family of devices that combine system-level support for industry-standard interfaces with processors that implement the embedded category of the Power Architecture technology. For functional characteristics of the processor, refer to the MPC8555E PowerQUICC™ III Integrated Communications Processor Reference Manual.
Overview
The following section provides a high-level overview of the MPC8541E features. Figure 1 shows the major functional units within the MPC8541E.
KEY FEATUREs
The following lists an overview of the MPC8541E feature set.
• Embedded e500 Book E-compatible core
— High-performance, 32-bit Book E-enhanced core that implements the PowerPC architecture
— Dual-issue superscalar, 7-stage pipeline design
— 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection
— Lockable L1 caches—entire cache or on a per-line basis
— Separate locking for instructions and data
— Single-precision floating-point operations
— Memory management unit especially designed for embedded applications
— Enhanced hardware and software debug support
— Dynamic power management
— Performance monitor facility
• Security Engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std 802.11i™, iSCSI, and IKE processing. The Security Engine contains 4 Crypto-channels, a Controller, and a set of crypto Execution Units (EUs). The Execution Units are:
— Public Key Execution Unit (PKEU) supporting the following:
– RSA and Diffie-Hellman
– Programmable field size up to 2048-bits
– Elliptic curve cryptography
– F2m and F(p) modes
– Programmable field size up to 511-bits
— Data Encryption Standard Execution Unit (DEU)
– DES, 3DES
– Two key (K1, K2) or Three Key (K1, K2, K3)
– ECB and CBC modes for both DES and 3DES
— Advanced Encryption Standard Unit (AESU)
– Implements the Rinjdael symmetric key cipher
– Key lengths of 128, 192, and 256 bits.Two key
– ECB, CBC, CCM, and Counter modes
— ARC Four execution unit (AFEU)
– Implements a stream cipher compatible with the RC4 algorithm
– 40- to 128-bit programmable key
— Message Digest Execution Unit (MDEU)
– SHA with 160-bit or 256-bit message digest
– MD5 with 128-bit message digest
– HMAC with either algorithm
— Random Number Generator (RNG)
— 4 Crypto-channels, each supporting multi-command descriptor chains
– Static and/or dynamic assignment of crypto-execution units via an integrated controller
– Buffer size of 256 Bytes for each execution unit, with flow control for large data sizes
• High-performance RISC CPM
— Two full-duplex fast communications controllers (FCCs) that support the following protocol:
– IEEE Std 802.3™/Fast Ethernet (10/100)
— Serial peripheral interface (SPI) support for master or slave
— I2C bus controller
— General-purpose parallel ports—16 parallel I/O lines with interrupt capability
• 256 Kbytes of on-chip memory
— Can act as a 256-Kbyte level-2 cache
— Can act as a 256-Kbyte or two 128-Kbyte memory-mapped SRAM arrays
— Can be partitioned into 128-Kbyte L2 cache plus 128-Kbyte SRAM
— Full ECC support on 64-bit boundary in both cache and SRAM modes
— SRAM operation supports relocation and is byte-accessible
— Cache mode supports instruction caching, data caching, or both
— External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing).
— Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)
— Supports locking the entire cache or selected lines
– Individual line locks set and cleared through Book E instructions or by externally mastered transactions
— Global locking and flash clearing done through writes to L2 configuration registers
— Instruction and data locks can be flash cleared separately
— Read and write buffering for internal bus accesses (Continue....)