Philips Semiconductors
Inverting Schmitt trigger
Product specification
74AHC3G14; 74AHCT3G14
APPLICATION INFORMATION
The slow input rise and fall times cause additional power
dissipation. This can be calculated using the following
formula:
Pad = fi × (tr × ICC(AV) + tf × ICC(AV)) × VCC
Where:
Pad = additional power dissipation (µW);
fi = input frequency (MHz);
tr = input rise time (ns); 10 % to 90 %;
tf = input fall time (ns); 90 % to 10 %;
ICC(AV) = average additional supply current (µA).
Average ICC differs with positive or negative input
transitions, as shown in Figs 15 and 16.
For AHC3G/AHCT3G14 used in relaxation oscillator
circuit, see Fig.17.
Remark to the application information
All values given are typical unless otherwise specified.
handboo2k,0h0alfpage
ICC(AV)
(µA)
150
100
MNA036
positive-going
edge
50
negative-going
edge
0
0
2.0
4.0
6.0
VCC (V)
Linear change of VI between 0.1VCC to 0.9VCC.
Fig.15 Average ICC for AHC3G Schmitt-trigger
devices.
200
handbook, halfpage
ICC(AV)
(µA)
150
100
50
MNA058
positive-going
edge
negative-going
edge
handbook, halfpage
R
C
MNA035
0
0
2
4 VCC (V) 6
Linear change of VI between 0.1VCC to 0.9VCC.
Fig.16 Average ICC for AHCT3G Schmitt-trigger
devices.
For AHC3G: f = T-1-- ≈ 0----.-5----5---1--×----R-----C---
For AHCT3G: f = T-1-- ≈ 0----.-6----0---1--×----R-----C---
Fig.17 Relaxation oscillator using the
AHC3G/AHCT3G14.
2004 Oct 18
16