

PRELIMINARY CUSTOMER PROCUREMENT SPECIFICATION

Z89332 DIGITAL TELEVISION CONTROLLER

FEATURES

Device	ROM (KW)	RAM* (Words)	PWM (8-Bit)	Voltage Range			
Z89332 24		640	8	4.5 to 5.5V			
Note: *General-Purpose							

42-Pin SDIP and 48-Pin Ceramic Packages with 42- to 48-Pin Adapter Socket

0°C to +70°C Temperature Range

GENERAL DESCRIPTION

The Z89332 Digital Television Controller is designed to provide complete audio and video control of television receivers, video recorders, and advanced on-screen display facilities. The television controller features a Z89C00 RISC processor core that controls the on-board peripheral functions and registers using the standard processor instruction set.

Character attributes can be controlled through two modes: the on-screen display Character-Control Mode and the Closed-Caption Mode. The Character-Control Mode provides access to the full set of attribute controls, allowing the modification of attributes on a character-by-character basis. The insertion of control characters permits direction of other character attributes. Closed-caption text can be decoded directly from the composite video signal and displayed on-screen with the assistance of the processor's digital signal processing (DSP) capabilities.

The fully customized 512 character set, formatted in two 256 character banks, can be displayed with a host of display attributes that include underlining, italics, blinking, eight foreground/background colors, character position offset delay, and background transparency.

- Fully Customized Character Set
- Character-Control and Closed-Caption Modes
- Keypad User Control
- TV Tuner Serial Interface
- Direct Video Signals
- Speed: 12 MHz

Serial interfacing with the television tuner is provided through the tuner serial port. Other serial devices, such as digital channel tunning adjustments, may be accessed through the industry-standard I^2C port.

User control can be monitored through the keypad scanning port, or the 16-bit remote control capture register. Receiver functions such as color and volume can be directly controlled by eight 8-bit pulse width modulated ports.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

GENERAL DESCRIPTION (Continued)

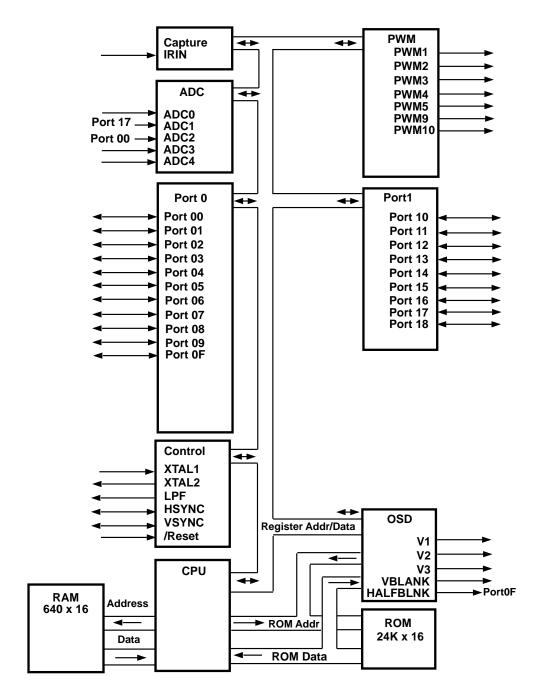


Figure 1. Functional Block Diagram

[©]ZiLŒ

PIN DESCRIPTION

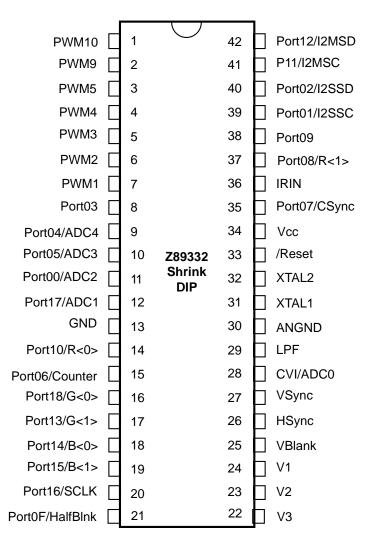


Figure 2. 42-Pin Shrink DIP and 48-Pin Ceramic Pin Configurations with 42- to 48-Pin Adapter Footprint

Name	Function	Z89332	Direction	Reset	Notes
V _{CC}	+ 5 Volts	34	PWR	_	
GND	0 Volts	13, 30	PWR	_	
IRIN	Infrared Remote Capture	36	I	I	
	Input				
ADC[4:0]	4-Bit A/D Converter Input	9, 10, 11, 12, 28	AI	I	
PWM10, PWM9	14-Bit Pulse Width	1, 2	0	0	
	Modulator Output				
PWM[5:1]	8-Bit Pulse Width Modulator	3, 4, 5, 6, 7	OD/O*	0	
	Output				
Port0[F:0]	Bit Programmable	21, -, -, -, -, -, 38, 37,	В	1	[1]
	Input/Output Ports	35, -, -, 15, 8, 40, 39,			
		11		-	
Port1[8:0]	Bit Programmable	16, 12, 20, 19, 18, 17,	В	I	
	Input/Output Ports	42, 41, 14			
SCL	I ² C Clock I/O	39 or 41	BOD		[2]
SCD	I ² C Data I/O	40 or 42	BOD		[3]
XTAL1	Crystal Oscillator Input	31	AI	Ι	
XTAL2	Crystal Oscillator Output	32	AO	0	
LPF	Loop Filter	29	AB	0	
HSYNC	H_SYNC	26	В	I	
VSYNC	V_SYNC	27	В	I	
/Reset	Device Reset	33	I	I	
V[3:1]	OSD Video Output Typically	22, 23, 24	0	0	
	Drive B, G, and R Outputs				
Blank	OSD Blank Output	25	0	0	
HalfBlank	OSD Half-Blank Outpu	21	0		[4]
RGB Digital	R[1:0], G[1:0], and B[1:0]	37, 14, 17, 16, 19, 18	0		[5]
Outputs	Outputs of the RGB Matrix				
SCLK	Internal Processor SCLK	20	0		[6]

Table 1. 42-Pin SDIP Pin Identification

1) Port 0 [E:A] is not available on the 42-pin SDIP version.

2) SCL I/O pin is shared with Port 0 or Port 11.

3) SCD I/O pin is shared with Port 02 or Port 12.

4) Half Blank output is a function shared with Port 0F.

5) Digital RGB outputs and the internal SCLK are shared with Port 1 [5:0].

6) Internal processor SCLK is shared with Port 16.

PWM outputs are push/pull in Revision Z89332EA and later.

V1, V2, V3 ANALOG OUTPUT Specifications V_{CC} = 5.25V and V_{CC} = 4.75V

V _{CC} = 5.25V	Condition	Limit
Output Voltage	Bit = 11	$4.2V\pm0.4V$
	Bit = 10	45% - 0.15V to 55% of actual data = 11 value
	Bit = 01	$0.60 \text{ V} \pm 0.4 \text{V}$
	Bit = 00	74% to 89% of actual data = 11 value
Setting Time	70% of DC Level, 10 pF Load	< 50 nsec

V _{CC} = 4.75V	Condition	Limit
Output Voltage	Bit = 11	$3.6V \pm 0.4V$
	Bit = 10	45% – 0.15V to 55% of actual data = 11 value
	Bit = 01	$0.60V \pm 0.4V$
	Bit = 00	74% to 89% of actual data = 11 value
Setting Time	70% of DC Level, 10 pF Load	< 50 nsec

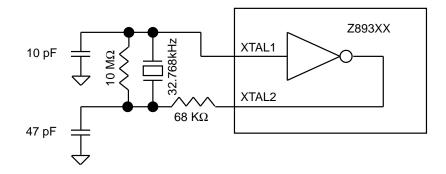


Figure 3. 32K Oscillator Recommended Circuit

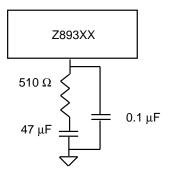


Figure 4. Recommended Low Pass Filter Circuit

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units	Conditions
V _{CC}	Power Supply Voltage	0	7	V	
V _{ID}	Input Voltage	-0.3	V _{CC} +0.3	V	Digital Inputs
VIA	Input Voltage	-0.3	V _{CC} +0.3	V	Analog Inputs (A/D0A/D4)
Vo	Output Voltage	-0.3	V _{CC} +0.3	V	All Push-Pull Digital Output
V _O	Output Voltage	-0.3	V _{CC} +8		Open-Drain PWM Outputs (PWM1PWM8)
V _O	Output Voltage	-0.3	V _{CC} +0.3	V	Push/Pull PWM Outputs (PWM1PWM8) = Z89332EA and Later Revisions
I _{ОН}	Output Current High		-10	mA	One Pin
I _{ОН}	Output Current High		-100	mA	All Pins
I _{OL}	Output Current Low		20	mA	One Pin
I _{OL}	Output Current Low		200	mA	All Pins
T _A	Operating Temperature	0	70	°C	
T _A	Storage Temperature	-65	150	°C	

DC CHARACTERISTICS

 $T_A = 0^{\circ}C$ to + 70°C; $V_{CC} = 4.5V$ to + 5.5V; $F_{OSC} = 32.768$ KHz

Symbol	Parameter	Min	Max	Typical	Units	Conditions
V _{IL}	Input Voltage Low	0	0.2 V _{CC}	0.4	V	
V _{IH}	Input Voltage High	0.7 V _{CC}	V _{CC}	3.6	V	
V _{PU}	Max. Pull-Up Voltage		V _{CC} +0.3		V	All Pins
V _{OL}	Output Voltage Low		0.4	0.16	V	@ I _{OL} = 1 mA
V _{OH}	Output Voltage High	V _{CC} –0.4		4.75	V	@ I _{OL} = 0.75 mA
V _{XL}	Input Voltage XTAL1 Low		0.3 V _{CC}	1.0	V	External Clock
V_{XH}	Input Voltage XTAL1 High	V _{CC} –2.0		3.5	V	Generator Driven
V _{HY}	Schmitt Hysteresis	3.0	0.75	0.5	V	On XTAL1 Input Pin
I _{IR}	Reset Input Current		150	90	μΑ	$V_{RL} = 0V$
Ι _{ΙL}	Input Leakage	-3.0	3.0	0.01	μΑ	@ 0V and V _{CC}
I _{CC}	Supply Current		100	60	mA	
I _{ADC}	Input Current		0.5		mA	AE Revision
I _{ADC}	Input Current		10		μA	CC,CA,EA & Later Re

Notes:

A) The Z89332 should not be operated for extended periods with the crystal oscillator disconnected, except in the defined power-down modes. In the event that the Z89332 is operated with the oscillator disconnected, the device may draw higher than typical current.

B) Each line of the on-screen display can consist of any number of characters, up to a maximum of 30 characters.

AC CHARACTERISTICS

 T_{A} = 0°C to + 70°C; V_{CC} = 4.5V to 5.5V; F_{OSC} = 32.768 KHz

Symbol	Parameter	Min	Мах	Typical	Units
T _P C	Input Clock Period	16	100	32	μS
T _R C,T _F C	Clock Input Rise and Fall			12	μS
T _D POR	Power-On Reset Delay	0.8		1.2	Sec

AC CHARACTERISTICS

 T_{A} = 0°C to + 70°C; V_{CC} = 4.5V to 5.5V; F_{OSC} = 32.768 KHz

Symbol	Parameter	Min	Max	Typical	Units
T _W RES	Power-On Reset Min. Width		5 TPC		μS
T_DH_S	H_Sync Incoming Signal Width	5.5	12.5	11	μS
T_DV_S	V_Sync Incoming Signal Width	0.15	1.5	1.0	mS
T _D E _S	Time Delay Between Leading Edge of V_Sync and H_Sync in Even Field	-12	+12	0	μS
T _D O _S	Time Delay Between Leading Edge of H_Sync in Odd Field	20	44	32	μS
${\rm T_WHV_S}$	H_Sync/V_Sync Edge Width		2.0	0.5	μS
Noto:					

Note:

All timing of the I^2C bus interface are defined by related specifications of the I^2C bus interface.