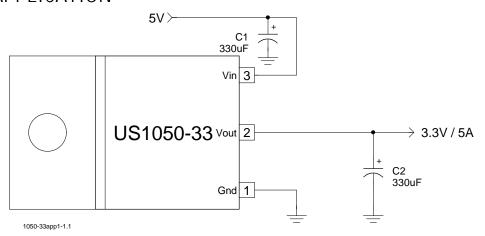


5A LOW DROPOUT POSITIVE FIXED 3.3V OUTPUT REGULATOR

FEATURES

- Guaranteed < 1.3V Dropout at Full Load Current
- **■** Fast Transient Response
- 1% Voltage Reference Initial Accuracy
- Output Current Limiting
- Built-in Thermal Shutdown

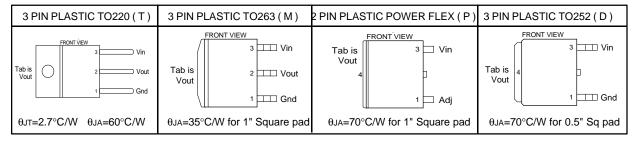

APPLICATIONS

■ Standard 3.3V Chip-Set and Logic Applications

DESCRIPTION

The US1050-33 product is a low dropout three terminal fixed 3.3V output regulator with minimum of 5A output current capability. This product is specifically designed to provide well regulated supply for low voltage IC applications requiring 3.3V output. The US 1050-33 is guaranteed to have <1.3V drop out at full load current making it ideal to provide well regulated output with supply voltage as low as 4.6V input.

TYPICAL APPLICATION


Typical application of US1050-33

Tj (°C)	3 PIN PLASTIC	3 PIN PLASTIC	2 PIN PLASTIC	3 PIN PLASTIC
	TO220 (T)	TO263 (M)	POWER FLEX (P)	TO252 (D)
0 TO 150	US1050-33CT	US1050-33CM	US1050-33CP	US1050-33CD

US1050-33

ABSOLUTE MAXIMUM RATINGS

PACKAGE INFORMATION

ELECTRICAL SPECIFICATIONS

Unless otherwise specified ,these specifications apply over ,Cin=1uF,Cout=10uF,and Tj=0 to 150°C.Typical values refer to Tj=25°C.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Output Voltage	Vo	Io=10mA,Tj=25°C,Vin=5V	3.267	3.300	3.330	V
-		Io=10mA, Vin=5V	3.234	3.300	3.366	
Line Regulation		Io=10mA,4.7V <vin<7v< td=""><td></td><td></td><td>0.2</td><td>%</td></vin<7v<>			0.2	%
Load Regulation (note 1)		Vin=5V,Vadj=0,10mA <lo<5a< td=""><td></td><td></td><td>0.4</td><td>%</td></lo<5a<>			0.4	%
Dropout Voltage						
(note 2)	ΔVo	Note 2, Io=5A		1.1	1.3	V
Current Limit		Vin=5V,dVo=100mV	5.1			Α
Minimum Load Current		Vin=5V		5	10	mA
(note 3)						
Thermal Regulation		30 mS PULSE,Vin-Vo=3V,Io=5A		0.01	0.02	%/W
Ripple Rejection		f=120HZ ,Co=25uF Tan				
		Io=2.5A,Vin-Vo=3V	60	70		dB
Adjust Pin Current Change		lo=10mA,Vin-Vo=1.5V,Tj=25		0.2	5	uA
Temperature Stability		Vin=5V,Vadj=0V,Io=10mA		0.5		%
Long Term Stability		Tj=125°C,1000 Hrs		0.3	1	%
RMS Output Noise		Tj=25°C 10hz <f<10khz< td=""><td></td><td>0.003</td><td></td><td>%Vo</td></f<10khz<>		0.003		%Vo

Note 1: Low duty cycle pulse testing with Kelvin connections are required in order to maintain accurate data. **Note 2:** Drop-out voltage is defined as the minimum differential voltage between Vin and Vout required to maintain regulation at Vout. It is measured when the output voltage drops 1% below its nominal value.

Note 3 : Minimum load current is defined as the minimum current required at the output in order for the output voltage to maintain regulation. Typically the resistor dividers are selected such that it automatically maintains this current.

2-34Rev. 1.1
10/27/00

PIN DESCRIPTIONS

PIN#	PIN SYMBOL	PIN DESCRIPTION
1	Gnd	This pin must be connected to GND plane using a low inductance short connection.
2	Vout	The output of the regulator. A minimum of 10uF capacitor must be connected
		from this pin to ground to insure stability.
3	Vin	The input pin of the regulator. Typically a large storage capacitor is connected
		from this pin to ground to insure that the input voltage does not sag below the
		minimum drop out voltage during the load transient response. This pin must
		always be 1.3V higher than Vout in order for the device to regulate properly.

BLOCK DIAGRAM

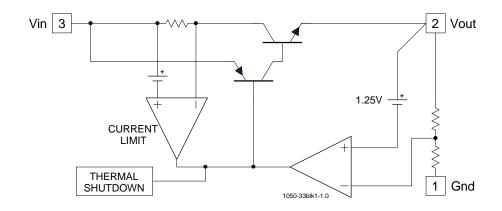


Figure 1 - Simplified block diagram of the US1050-33

APPLICATION INFORMATION

Stability

The US1050-33 requires the use of an output capacitor as part of the frequency compensation in order to make the regulator stable. Typical designs for microprocessor applications use standard electrolytic capacitors with a typical ESR in the range of 50 to 100 m Ω and an output capacitance of 500 to 1000uF. Fortunately as the capacitance increases, the ESR decreases resulting in a fixed RC time constant. The US1050-33 takes advantage of this phenomena in making the overall regulator loop stable.For most applications a minimum of 100uF aluminum electrolytic capacitor such as Sanyo MVGX series ,Panasonic FA series as well as the Nichicon PL series insures both stability and good transient response.