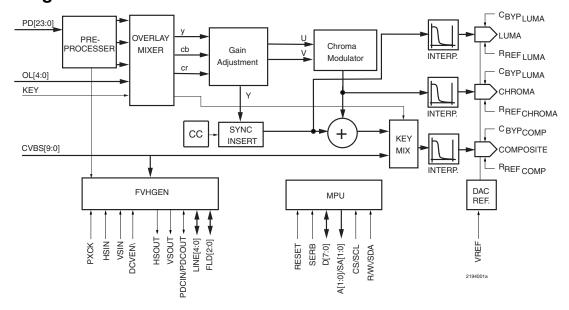


TMC2192 10 Bit Encoder

Features

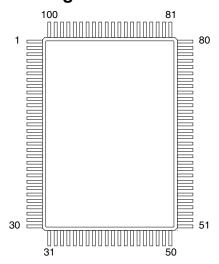

- Multiple input formats
 - 20 bit CCIR601
 - 10 bit CCIR656
 - 10 bit Digital Composite
- · Synchronization modes
 - Master
 - Slave
 - Genlock
 - CCIR656
- · Subcarrier modes
 - Free-run
 - Subcarrier reset
 - Genlock
 - DRS-lock
- Ancillary Data Control (ANC)
- Pixel rates from 10 MHz to 15 MHz
- Programmable horizontal timing
- Programmable vertical blanking interval (VBI)
- Line-by-line pedestal enable
- Programmable pedestal height from -20 IRE to 20 IRE
- · Programmable burst amplitude and phase
- · Controlled edge rates for
 - Sync
 - Burst
 - Active video

- · Programmable color space matrix
- 8:8:8 video reconstruction
- Three 10 bit D/A's with independent trim
- Individual power down modes for each D/A
- Multiple output formats
 - S-video
 - Composite
 - Digital composite output
- · Pin-driven and data-driven, window keying
- Closed Caption waveform generation (13.5 MHz only)
- Sin(X)/X compensation filter
- 5 bit VBI line counter
- 3 bit field counter
- · Internal test pattern generation
 - 100% Color Bars
 - 75% Color Bars
 - Modulated Ramp

Applications

- · Broadcast Television
- Nonlinear Video Processing

Block Diagram


Table of Contents

Features	Inte
Applications1	x/S
Block Diagram	Out
10 Bit Encoder	Dig
List of Figures	And
List of Tables	Lay
Pin Assignments4	,
Pin Definitions4	Har
Functional Description	Dat
Input Formats7	Par
Color Space Matrix 9	Ser
Synchronization Modes 10	
Propagation Delay	Contro
Blanking Control	Contro
Pixel Data Control	Absol
Edge Shaping	Opera
Horizontal Programming12	Electr
Vertical Timing	
Chrominance Processor	Switcl
Subcarrier Programming	Syste
PAL Subcarrier	Applic
PAL-M Subcarrier	Lay
Subcarrier Synchronization	Out
Burst Envelope 23	Mecha
Color-Difference Low-Pass Filters 23	100
Sync and Pedestal Insertion	
Pedestal Enable	Order
Sync and Blank Insertion	Life S
Closed Caption Insertion 24	
Line Selection	
Parity Generation	

Interpolation Filters 25
x/Sin(x) Filter
Output Data Formats25
Digital Composite Output 26
Ancillary Data26
Operating Modes 27
Layering Engine
Hardware Keying 29
Data Keying
Parallel Microprocessor Interface 29
Serial Control Port (R-Bus)
Data Transfer via Serial Interface 31 Serial Interface Read/Write Examples 31
Control Register Map33
Control Register Definitions35
Absolute Maximum Ratings60
Operating Conditions
Electrical Characteristics62
Switching Characteristics62
System Performance Characteristics63
Applications Discussion63
Layout Considerations 64
Output Low-Pass Filters 67
Mechanical Dimensions
100-Lead MQFP 71
Ordering Information
Life Support Policy

List of F	Figures	List of	Tables
Figure 1.	Input Formats	Table 1.	CSM Coefficient Range 9
Figure 2.	24 bit Input Format	Table 2.	Expected Output Values for the
Figure 3.	CCIR656 Input Format		CSM with YCBCR Inputs 9
Figure 4.	10 bit Input Format	Table 3.	PDC Edge Control
Figure 5.	20 bit 4:2:2 Input Format	Table 4.	Horizontal Line Equations 12
Figure 6.	20 bit 4:4:4 Input Format	Table 5.	Horizontal Timing Specifications 13
Figure 7.	Propagation Delay through the	Table 6.	Vertical Interval Timing
	Encoder		Specifications
Figure 8.	Horizontal Timing	Table 7.	Default Horizontal Timing
Figure 9.	Horizontal Timing – Vertical Blanking13		Parameters
Figure 10.	Horizontal Timing – 1st Half-line14	Table 8.	NTSC Field/Line Sequence and
Figure 11.	Horizontal Timing – 2nd Half-line 14		Identification
Figure 12.	NTSC Vertical Interval15	Table 9.	PAL Field/Line Sequence and
Figure 13.	PAL Vertical Interval		Identification
Figure 14.	PAL-M Vertical Interval	Table 10.	PAL-M Field/Line Sequence and
Figure 15.	Burst Envelope		Identification 20
Figure 16.	Gaussian Filter Response23	Table 11.	Standard Subcarrier Parameters 22
Figure 17.	Interpolation Filter	Table 12.	Line by Line Pedestal Enable 23
Figure 18.	Interpolation Filter – Passband	Table 13.	Closed Caption Line Selection 24
	Detail	Table 14.	D/A Outputs 25
Figure 19.	X/SIN(X) Filter	Table 15.	Ancillary Data Format
Figure 20.	Layering Engine	Table 16.	Ancillary Data Control – Phase 27
Figure 21.	Overlay Outputs	Table 17.	Ancillary Data Control Frequency 27
Figure 22.	Data Keying	Table 18.	Field Identification and Subcarrier
Figure 23.	Microprocessor Parallel Port –		Reset Modes 27
	Write Timing	Table 19.	Layering and Keying Modes 28
Figure 24.	Microprocessor Parallel Port –	Table 20.	Overlay Address Map 29
	Read Timing	Table 21.	Parallel Port Control
Figure 25.	Serial Port Read/Write Timing	Table 22.	Serial Port Addresses
Figure 26.	Serial Interface – Typical Byte	Table 23.	Control Register Map
	Transfer32		
Figure 27.	Serial Interface – Chip Address 32		
Figure 28.	Typical Analog Reconstruction Filter63		
Figure 29.	Overall Response		
Figure 30.	Typical Layout		
Figure 31.	ST-163E Layout		
Figure 32.	Pass Band		
Figure 33.	Stop Band67		
Figure 34.	2T Pulse		
Figure 35.	Group Delay		

Pin Assignments

65-6294-14

Pin	Function	Pin	Function	Pin	Function	Pin	Function
1	V_{DDA}	31	PD ₁₉	51	PD ₁	81	FLD2
2	COMP	32	PD ₁₈	52	PD ₀	82	FLD1
3	C _{BYPCOMP}	33	PD ₁₇	53	D _{GND}	83	FLD0
4	AGND	34	PD ₁₆	54	V _{DD}	84	CVBS9
5	CHROMA	35	PD ₁₅	55	VSIN	85	CVBS8
6	CBYPCHROM	36	PD ₁₄	56	HSIN	86	CVBS7
7	VDDA	37	PD ₁₃	57	DCVEN	87	CVBS6
8	RREFCHROM	38	PD ₁₂	58	SER	88	CVBS5
9	AGND	39	V _{DD}	59	CSVSCL	89	CVBS4
10	LUMA	40	D _{GND}	60	R/W\/SDA	90	CVBS3
11	C _{BYPLUMA}	41	PD ₁₁	61	A1/SA1	91	CVBS2
12	VDDA	42	PD ₁₀	62	A0/SA0	92	CVBS1
13	R _{REFLUMA}	43	PD ₉	63	D ₇	93	CVBS0
14	AGND	44	PD8	64	D ₆	94	RESET
15	AGND	45	PD ₇	65	D ₅	95	PXCK
16	V_{DDA}	46	PD ₆	66	D ₄	96	V_{DD}
17	VDDA	47	PD ₅	67	D ₃	97	DGND
18	AGND	48	PD ₄	68	D ₂	98	V _{REF}
19	AGND	49	PD ₃	69	D ₁	99	RREFCOMP
20	KEY	50	PD ₂	70	D ₀	100	AGND
21	OL ₄			71	D _{GND}		
22	OL ₃			72	V _{DD}		
23	OL ₂			73	PDC		
24	0L ₁			74	HSOUT		
25	OL ₀			75	VS0UT		
26	D _{GND}			76	LINE4		
27	PD ₂₃			77	LINE3		
28	PD ₂₂			78	LINE2		
29	PD ₂₁			79	LINE1		
30	PD ₂₀			80	LINE0		

Pin Definitions

Pin Name	Pin Number	Value	Description								
CLOCK, SYNC	CLOCK, SYNC, & CONTROL INPUTS (6 pins)										
DCVEN	57	TTL	Digital CVBS Output Enable. When DCVEN is LOW, the Comp2 output prior to the D/A is routed to D7-0, FLD2-1 providing a digital composite output. When DCVEN is HIGH, D7-0 and FLD2-1 operate in their normal mode.								
HSIN	56	TTL	Horizontal Sync Input. When operating in slave, Genlock, or DRS-Lock the TMC2192 will start a new horizontal line with each falling edge of HSIN.								
KEY	20	TTL	Hard Key selection. When the control register bit HKEN is set HIGH and the hardware KEY pin is high, the video data considered to be the foreground. is routed to the COMP2 output. This control signal is data aligned so that the pixel that is present on the PD port when KEY signal is latched is at the midpoint of the key transition. When HKEN is LOW, Key is ignored.								

Pin Definitions (continued)

Pin Name	Pin Number	Value	Description
PXCK	95	TTL	Pixel Clock Input. PXCK is a clock signal that period is twice the sample rate of the pixel data. The operating range is 20 to 30 MHz. The clock is internally divided by 2 to generate the internal pixel clock, PCK. PXCK drives the entire TMC2192 except the asynchronous microprocessor interface.
RESET	94	TTL	Master Chip Reset. When LOW, All outputs are tri-stated and the internal state machines and control registers are reset. At rising edge of RESET, all outputs are active, the preset values will be loaded into the control registers and the internal states machines start to operate.
VSIN	55	TTL	Vertical Sync Input. When operating in slave, Genlock, or DRS-Lock the TMC2192 will start a new vertical field with each falling edge of VSIN that is coincident with HSIN.
SYNC & CONT	TROL OUTPUTS (11 pins)	
FLD[2:0]	81–83	TTL	Field Identifier. Field Identifier outputs the current field number. For all video standards the field identifier will cycle through the eight counts.
HSOUT	74	TTL	Horizontal Sync Output. The alignment of HSOUT to the pixel data port or DCVBS port is controlled by control register TSOUT.
LINE[4:0]	76–80	TTL	Vertical Blanking Interval Line Identifier. LINE identifies the current line number for the first 31 lines. If the line count is greater than 31 then LINE is 11111b. The first line with a vertical serration is considered to be line 0.
PDC	73	TTL	Pixel Data Control.
			When PDCDIR = LOW: At a rising edge, The next pixel starts a controlled ramp of the PD data. At a falling edge, the pixel prior is the last PD used in the ramp. The rising edge is determined by the PDCCNT control register, the falling edge of PDC is determined by the horizontal timing registers.
			When PDCDIR = HIGH: PDCIN is used to override the internal PDC. When HIGH, the internal PDC controls the blank and unblank window. When LOW, the video remains blanked regardless of the internal PDC. All edges have the same ramp control as the internal PDC.
VSOUT	75	TTL	Vertical Sync Output. The alignment of VSOUT to the pixel data port or DCVBS port is controlled by control register TSOUT.
DATA INPUTS	(39 pins)		
CVBS[9:0]	84–93	TTL	Composite Data Input
OL[4:0]	21–25	TTL	Overlay Control
PD[23:0]	27–38, 41–52	TTL	Component Data Input
ANALOG INTE	ERFACE – Video (Out (5 pins)	
LUMA	10	1.35Vp-p	Luma
CHROMA	5	1.35Vp-p	Chroma
COMP	2	1.35Vp-p	Composite D/A with optional keying

Pin Definitions (continued)

Pin Name	Pin Number	Value	Description
ANALOG INTE	RFACE – Suppor	t (9 pins)	
CBYPLUMA	11	0.1 μF	Reference Bypass Capacitor for LUMA DAC. Connection point for 0.1 μF Capacitor.
CBYPCHROM	6	0.1 μF	Reference Bypass Capacitor for CHROMA DAC. Connection point for 0.1 μF Capacitor.
Свурсомр	3	0.1 μF	Reference Bypass Capacitor for COMPOSITE DAC. Connection point for 0.1 μF Capacitor.
RREFLUMA	13	1210 Ohm	Current Setting Resistor. Connection point for external current setting resistor for LUMA DAC. The resistor is connected between RREFLUMA and GND. Output video levels are inversely proportional to the value of RREF2.
RREFCHROM	8	1210 Ohm	Current Setting Resistor. Connection point for external current setting resistor for CHROMA DAC. The resistor is connected between RREFCHROM and GND. Output video levels are inversely proportional to the value of RREFCHROM.
RREFCOMP	99	1210 Ohm	Current Setting Resistor. Connection point for external current setting resistor for COMPOSITE DAC. The resistor is connected between RREFCOMP and GND. Output video levels are inversely proportional to the value of RREFCOMP.
VREF	98	1.235 V	Voltage Reference Input. External voltage reference input, internal voltage reference output, nominally 1.235V.
MPU INTERFA	CE (13 pins)		
A[1:0]/S _A [1:0]	61, 62	TTL	When SER (HIGH), OLUT/control/pointer address. When SER (LOW), SA[1:0] of serial chip address SA[6:0].
CS/SCL	59	TTL/R-BUS	When SER (HIGH), microprocessor port clock. When SER (LOW), serial bus clock.
D[7:0]	63–70	TTL	Bi-directional Data Bus.
RW/SDA	60	TTL/R-BUS	When SER (HIGH), read/write control. When SER (LOW), serial bus bi-directional data.
SER	58	TTL	Microprocessor Select. When LOW, the serial interface is enabled. When HIGH, the parallel interface is enabled.
POWER & GR	OUND (17 pins)		
AGND	4, 9, 14, 15, 18, 19, 100	0.0V	Analog ground
DGND	26, 40, 53, 71, 97	0.0V	Digital ground
V _{DD}	39, 54, 72, 96	+5.0V	Digital positive power supply
VDDA	1, 7, 12, 16, 17	+5.0V	Analog positive power supply

Functional Description

Input Formats

Control Registers for this section

Address	Bit(s)	Name
0x05	7	D1OFF
0x05	6-4	INMODE
0x06	0	TSOUT

The TMC2192 supports YCBCR component sources on the pixel data port. YCBCR input sources are supported in 10 bit 4:2:2, 20 bit 4:2:2, 20 bit 4:4:4, and 24 bit 4:4:4. In the 4:2:2 cases the color difference components are linearly interpolated to 4:4:4 internally.

Demuxing of multiplexed data streams depends on which synchronization mode the encoder is operating in. For slave and genlock modes the falling edge of \overline{HSIN} must be LOW prior to the C_B data in order to demux the data correctly. For master mode synchronization the falling edge of \overline{HSOUT} must be LOW prior to the Y data in order to demux the data correctly. Finally, in 656 mode the demuxing of the data stream is determined by the TRS codes, the first sample after the TRS is considered a C_B sample of the C_B Y C_R Y I packet.

The control register D1OFF controls the formatting of the incoming luminance data at the pixel data port. When D1OFF is HIGH a blanking level of 64₁₀ is subtracted from the luminance and when D1OFF is LOW the incoming the pixel data is passed through. The inversion of the MSB's on the CB and CR components is controlled by the INMODE control register.

INMODE	23				16	15		PD		9	8	7			0
00	7	C _B			0	7		C R			0	7	Υ		0
01	9		YC BC	R			0								
1x	9		YC _B C	R			0			1	0	9		Y	2

Figure 1. Input Formats

2192002A

1. INMODE = 00, PD[7:0] = PD[23:16] = CB, PD[15:8] = CR

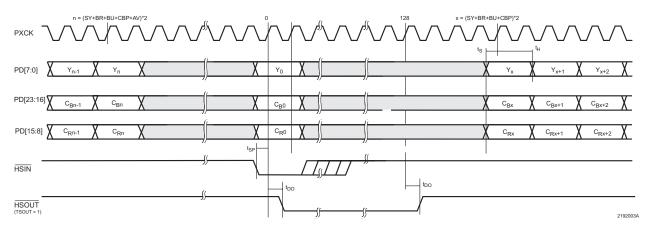


Figure 2. 24 Bit Input Format

2. INMODE = 01, PD[23:14] = YCBCR running at 27MHz.

The PD port is clocked at twice the pixel rate, with the data organized as C_B Y C_R Y, with the cosited Y's following the C_B's. In its CCIR-656 time base mode, the demuxed C_B, Y, and C_R data is synchronized to the SAV preamble. The first

data value, after the SAV preamble, is treated as a CB data point in the multiplexed CB, Y, CR Y, D1 data stream.

Note: Figure 3, pixel numbering, reflects the SMPTE-125M pixel numbering.

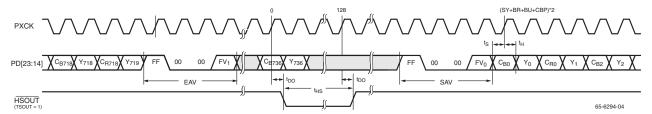


Figure 3. CCIR656 Input Format

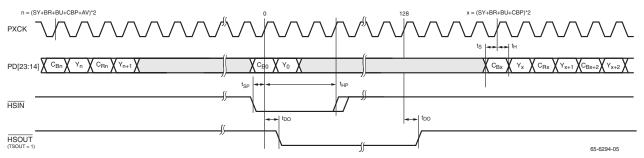


Figure 4. 10 bit Input Format

3. INMODE = 11, PD[9:0] = Y, PD[23:14] = C_B/C_R

Figure 5. 20 bit 4:2:2 Input Format

4. INMODE = 10, PD[9:0] = Y at PCK, PD[23:14] = CB-CR at PXCK

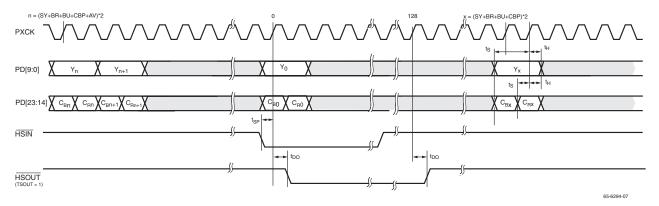


Figure 6. 20 bit 4:4:4 Input Format

Color Space Matrix

Control Registers for this section

Address	Bit(s)	Name
0x30	7-0	MCF1L
0x33	7-0	MCF2L
0x35	7-0	MCF3L
0x3A	7-4	MCF1M
0x3B	2-0	MCF2M
0x3C	2-0	MCF3M

Matrix configuration:

 $Y_{composite}$ = MCF1 * Yin U = MCF2 * CB V = MCF3 * CR

The color space matrix consists of 3 multipliers with independently adjustable coefficients, and a resolution of 0.00049 (1/2048). The amount of gain varies among coefficients, Table 1 summarizes the gain for each coefficient.

Table 1. CSM Coefficient Range

Coefficient	Gain Range	Comment
MCF1	0 to 2	
MCF2	0 to 1	11 bit coefficient.
MCF3	0 to 1	11 bit coefficient.

To aid in the programming of the color space matrix Table 2 provides a set of default input and output values for 100% color bars. The component values given will be after the pre-

processing block and prior to the sync and pedestal insertion. The blank, pedestal, and sync values are given as a reference. Table 4 gives the default coefficients values for the CSM.

Table 2. Expected Output Values for the CSM with YCBCR Inputs

		Inputs		;	5:2 Output	s	7:3 Outputs			
Color	Υ	Св	CR	Υ	U	V	Υ	U	V	
White	876	0	0	536	0	0	568	0	0	
Yellow	776	-448	73	475	-235	54	503	-249	57	
Cyan	614	151	448	376	79	-332	407	84	-351	
Green	514	-297	-375	315	-156	-278	340	-165	-294	
Magenta	362	297	375	222	156	278	240	165	294	
Red	262	-151	448	160	-79	332	173	-84	351	
Blue	100	448	-73	61	235	-54	66	249	-57	
Black	0	0	0	0	0	0	0	0	0	
Blank	64			240			256			
Pedestal				44			0			
Sync				8			12			

Synchronization Modes

Control Registers for this section

Address	Bit(s)	Name
0x06	5-3	MODE
0x06	1	TOUT
0x06	0	TSOUT

The TMC2192 offers a variety of synchronization modes; these are master, slave, genlock, 656 mode, and DRS-Lock. In master mode, the TMC2192 generates its own timing and the synchronization is supplied externally by $\overline{\mbox{HSOUT}}$ and $\overline{\mbox{VSOUT}}$ signals. In slave and genlock modes the TMC2192 derives its timing from the input pins $\overline{\mbox{HSIN}}$, $\overline{\mbox{VSIN}}$. In 656 mode the timing is driven by the synchronization codes embedded into the data stream.

Master

The TMC2192 drives the output pins $\overline{\text{HSOUT}}$ and $\overline{\text{VSOUT}}$ to synchronize the incoming video. A new color frame starts at the rising edge of $\overline{\text{RESET}}$. The encoder always starts at the 1st vertical serration in field 8 and will freerun the field and line sequence. The control register bit $\overline{\text{SRESET}}$ can be used to synchronize the start of the field and line sequence in master mode by resetting the FVHGEN state machine. Output synchronization signal $\overline{\text{VSOUT}}$ can operate in a traditional sync mode or in a MPEG style field toggle mode.

Slave

The TMC2192 is driven by the input synchronization pins $\overline{\text{HSIN}}$ and $\overline{\text{VSIN}}$. When the falling edge of $\overline{\text{HSIN}}$ and $\overline{\text{VSIN}}$ occurs at the same rising edge of PXCK the TMC2192 will start a new field. $\overline{\text{VSIN}}$ can be either a traditional pulse or the MPEG style field toggle. In both cases the TMC2192 will flywheel through fields 2, 4, 6, and 8 synchronizing only to fields 1, 3, 5, and 7.

CCIR656

The TMC2192 derives all synchronization from the embedded TRS (timing reference signals) information. Blanking of selected lines is determined by the v bit of the TRS. However the control registers VBIENx can override and blank the active video portion of VBI lines regardless of the state of the v-bit.

Genlock

The TMC2192 is driven by the input synchronization pins $\overline{\text{HSIN}}$ and $\overline{\text{VSIN}}$. When the falling edge of $\overline{\text{HSIN}}$ and $\overline{\text{VSIN}}$ occurs at the same rising edge of PXCK the TMC2192 will start a new field. $\overline{\text{VSIN}}$ can be either a traditional pulse or the MPEG style field toggle. In both cases the TMC2192 will flywheel through fields 2, 4, 6, and 8 synchronizing only to fields 1, 3, 5, and 7. The TMC2192 collects GRS data and resets its subcarrier phase and frequency to the data embedded in the GRS stream. The GRS detection occurs only on the CBVS port.

DRS

The TMC2192 is driven by the input synchronization pins $\overline{\text{HSIN}}$ and $\overline{\text{VSIN}}$. When the falling edge of $\overline{\text{HSIN}}$ and $\overline{\text{VSIN}}$ occurs at the same rising edge of PXCK the TMC2192 will start a new field. $\overline{\text{VSIN}}$ can be either a traditional pulse or the MPEG style field toggle. In both cases the TMC2192 will flywheel through fields 2, 4, 6, and 8 synchronizing only to fields 1, 3, 5, and 7. Subcarrier phase adjustment is determined by the DRS data. The DRS detection can occur on either the CBVS port or the pixel data port.

Propagation Delay

The propagation delay from the pixel data (PD) input to the D/A output is 64 PXCK's. Figure 8 shows the propagation delay for both master and slave synchronization modes. For CCIR656 data streams, pixel 736 (pixel 0 in Figure 8) is the midpoint of sync and is 32 PXCK's (24 PXCK's in PAL) after the EAV TRS.

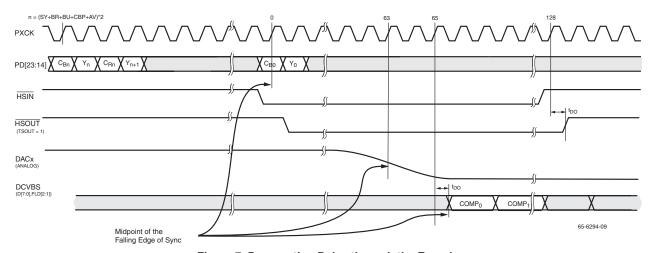


Figure 7. Propagation Delay through the Encoder

Blanking Control

Control Registers for this section

Address	Bit(s)	Name
0x04	1-0	PDRM
0x06	2	PDCDIR
0x18	4-0	VBIENF1
0x19	4-0	VBIENF2
0x1F	7-0	PDCCNT

The content of VBIENFx[4:0] selects the first line to contain an active video region in each field, all subsequent lines for the remainder of the field are active. To blank an entire field, the user zeroes the VBIENFx[4:0] control register. In CCIR656 slave mode, the user can selectively blank any enabled line by setting its TRS V bit HIGH. For 525-line systems, NTSC line numbering is employed, with the first vertical serration starting on line 4. PAL line numbering is used with 625-line systems, with each field's line 1 being the start of the first vertical serration.

Any line(s) enabled by the closed caption control are automatically unblanked for the closed caption waveform, irrespective of the corresponding values of VBIENF.

Pixel Data Control

The pixel data control has two modes of operation, as an input or as an output. The mode of operation is determined by the PDCDIR control register. When PDC is an input the internally generated PDC is ANDed with the PDC pin. This allows the user to blank any active video regions. When PDC is an output, the internally generated PDC is the output for the PDC pin.

The internal PDC control will toggle to a logic HIGH at the pixel specified by PDCNT and toggle to a logic LOW four pixels prior to the end of the active video region. The starting point and ending point of the active video region (VA) are determined by the control registers 10h to 1Fh. When PDC is used as an input, the sloped edge of the active video region will occur on the next four pixels following the toggle point.

Edge Shaping

The TMC2192 has three modes of sloped edges on the active video region and are controlled by PDRM control register.

Table 3. PDC Edge Control

PDRM[1:0]	Slope type at PDC (HIGH)	Slope type at PDC (LOW)
00	The following four pixels have the weighting of 1/8, 1/2, 7/8 and 1 for NTSC and 1/8, 3/8, 5/8, and 7/8 for PAL.	The following four pixels have the weighting of 1, 7/8, 1/2, and 1/8 for NTSC and 7/8, 5/8, 3/8, and 1/8 for PAL.
01	The fifth pixel is sampled and scaled 1/8, 1/2, 7/8 and 1 over the next four pixels for NTSC and 1/8, 3/8, 5/8, and 7/8 over the next four pixels for PAL.	The fifth pixel s sampled and scaled 1, 7/8, 1/2 and 1/8 over the next four pixels for NTSC and 7/8, 5/8, 3/8, and 1/8 over the next four pixels for PAL.
1x	Slope is off, edge control is dictated by the PD stream from active video start	Slope is off, edge control is dictated by the PD stream to active video end

Horizontal Programming

Control registers for this section

Address	Bit(s)	Name						
0x06	7-6	FORMAT						
0x19	7	SHORT						
0x19	6	T512						
0x19	5	HALFEN						
0x20	7-0	SY						
0x21	7-0	BR						
0x22	7-0	BU						
0x23	7-0	CBP						
0x24	7-0	XBP						
0x25	7-0	VA						
0x26	7-0	VC						
0x27	7-0	VB						
0x28	7-0	EL						
0x29	7-0	EH						
0x2A	7-0	SL						
0x2B	7-0	SH						
0x2C	7-0	FP						
0x2D	7-6	XBP (MSB's)						
0x2D	5-4	VA (MSB's)						
0x2D	3-2	VB (MSB's)						
0x2D	1-0	VC (MSB's)						

Horizontal interval timing is fully programmable and is established by loading the timing registers with the duration of each horizontal element. The duration is expressed in PCK clock cycles. In this way, any pixel clock rate between 10 MHz and 15 MHz can be accommodated, and any desired standard or non-standard horizontal video timing may be produced.

Horizontal timing parameters can be calculated as follows:

t = N x (PCK period)

= N x (2 x PXCK period)

where N is the value loaded into the appropriate timing register, and PCK is the pixel clock period.

When programming horizontal timing, subtract 5 PCK periods from the calculated values of CBP and add 5 PCK periods to the calculated value for VA. The control register HALFEN enables the 1st half line (UBV) on line 283 for NTSC, PAL-M and line 23 for all other PAL standards when it is LOW.

Table 4. Horizontal Line Equations

Line Type	Line ID	Line Length Equals
EE	00	EL + EH + EL + EH
SE	02	SL + SH + EL + EH
SS	03	SL + SH + SL + SH
ES	01	EL + EH + SL + SH
EB	10	EL + EH + EL + EH
UBB, -BB	0D, 05	SY + BR + BU + CBP + VA + FP
UVV, -VV	0F, 07	SY + BR + BU + CBP + VA + FP
UVE, -VE	0C, 04	SY + BR + BU + CBP + VC + FP + EL + EH
UBV	0E	SY + BR + BU + XBP + VB + FP

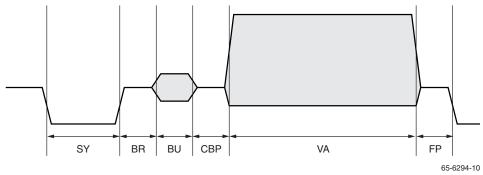


Figure 8. Horizontal Timing

Table 5. Horizontal Timing Specifications

Parameter	NTSC-M (μs)	PAL-I (μs)	PAL-M (μs)		
FP	1.5	1.65	1.9		
SY	4.7	4.7	4.95		
BR	0.6	0.9	0.9		
BU	2.5	2.25	2.25		
CBP	1.6	2.55	1.8		
VA	52.6556	51.95	51.692		
Н	63.5556	64.0	63.492		

Vertical interval timing is also fully programmable, and is established by loading the timing registers with the duration's of each vertical timing element, the duration expressed in PCK clock cycles. In this way as with horizontal program-

ming, any pixel rate between 10 and 15 Mpps can be accommodated, and any desired standard or non-standard vertical video timing may be produced.

Like horizontal timing parameters, vertical timing parameters are calculated as follows:

where N is the value loaded into the appropriate timing register, and PCK is the pixel clock period.

The vertical interval comprises several different line types based upon H, the Horizontal line time.

$$H = (2 \times SL) + (2 \times SH)$$
 [Vertical sync pulses]
= $(2 \times EL) + (2 \times EH)$ [Equalization pulses]

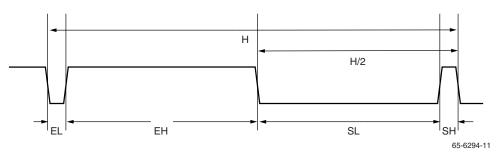


Figure 9. Horizontal Timing - Vertical Blanking

The VB and VC control registers are added to produce the half-lines needed in the vertical interval at the beginning and end of some fields. These must properly mate with components of the normal lines.

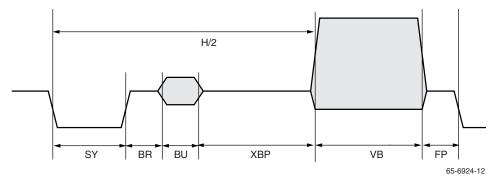


Figure 10. Horizontal Timing – 1st Half-line

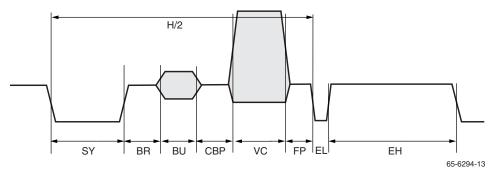


Figure 11. Horizontal Timing – 2nd Half-line

Table 6. Vertical Interval Timing Specifications

Parameter	NTSC-M (μs)	PAL-I (μs)	PAL-M (μs)		
Н	63.5556	64	63.492		
EH	29.4778	29.65	29.45		
EL	2.3	2.35	2.3		
SH	4.7	4.7	4.65		
SL	27.1	27.3	27.1		

Timing Register (hex)																			
	Field Rate	Horizontal Freg.	Pixel Rate	PXCK Freq.	SY	BR	BU	СВР	XBP	VA	vc	VB	EL	EH ²	SL ²	SH	FP	Note	CBL
Standard	(Hz)	(KHz)	(Mpps)	(MHz)	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2F
NTSC sqr. pixel	59.94	15.734266	12.27	24.54	ЗА	07	1F	0F	23	8B	05	77	1C	6A	4C	ЗА	12	65	52
NTSC CCIR-601	59.94	15.734266	13.50	27.00	40	08	22	11	44	СВ	1E	98	1F	8E	6D	40	14	65	59
NTSC 4x FSC	59.94	15.734266	14.32	28.64	43	09	24	12	54	F7	30	B5	21	A6	84	43	15	65	5F
PAL sqr. pixel	50.00	15.625000	14.75	29.50	45	0D	21	21	6D	03	2B	B7	23	B5	93	45	19	75	61
PAL CCIR-601	50.00	15.625000	13.50	27.00	40	0C	1E	22	4D	BE	0E	93	20	90	70	40	16	65	59
PAL 15 Mpps	50.00	15.625000	15.00	30.00	46	0D	22	21	73	11	31	BF	23	BD	9A	47	19	75	62
PAL-M sqr.pixel	60.00	15.750000	12.50	25.01	3E	0B	1C	13	26	86	FE	8B	1D	70	53	ЗА	18	61	52
PAL-M CCIR-601	60.00	15,750000	13.50	27.00	44	0C	1E	13	26	Bf	12	99	1F	8E	6E	3F	1A	65	57
PAL-M 4x FSC	60.00	15,750000	14.30	28.60	47	0D	20	15	4C	E8	22	AC	21	A5	84	42	1B	65	5D

Notes:

- 1. XBP, VA, VC, and VB are 10 bit values. The 2 MSBs for these four variables are in Timing Register 2D.
- 2. EH and SL are 9 bit values. A most significant "1" is forced by the TMC2192 since EH and SL must range from 256 to 511. EH and SL may be extended to 767. Only the eight LSBs are stored in Timing Registers 29 and 2A.
- 3. Every calculated timing parameter has a minimum value of 5 except EH and SL which have minimum values of 256.

Vertical Timing

The vertical timing is controlled by the FORMAT control register, which dictates the field and line sequence.

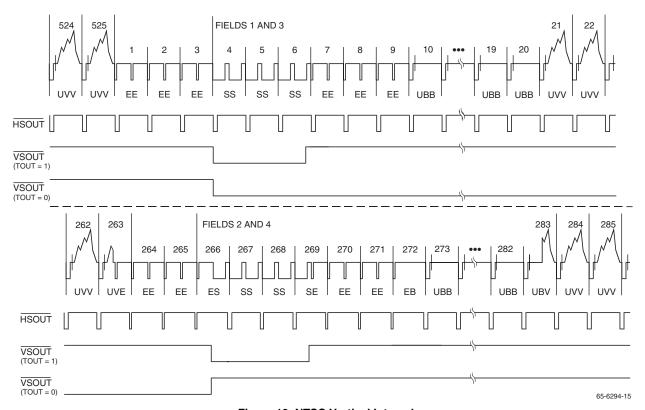


Figure 12. NTSC Vertical Interval

Table 8. NTSC Field/Line Sequence and Identification

FIE	Field 1 FIELD ID = x00			Field 2 FIELD ID = x01			Field 3 LD ID = 3	x10	FIE	x11	
Line	ID	LTYPE	Line	ID	LTYPE	Line	ID	LTYPE	Line	ID	LTYPE
4	SS	03	266	ES	01	4	SS	03	266	ES	01
5	SS	03	267	SS	03	5	SS	03	267	SS	03
6	SS	03	268	SS	03	6	SS	03	268	SS	03
7	EE	00	269	SE	02	7	EE	00	269	SE	02
8	EE	00	270	EE	00	8	EE	00	270	EE	00
9	EE	00	271	EE	00	9	EE	00	271	EE	00
10	UBB	0D	272	EB	10	10	UBB	0D	272	EB	10
	UBB	0D	273	UBB	0D		UBB	0D	273	UBB	0D
19	UBB	0D		UBB	0D	19	UBB	0D		UBB	0D
20	UBB	0D	282	UBB	0D	20	UBB	0D	282	UBB	0D
21	UVV	0F	283	UBV	0E	21	UVV	0F	283	UBV	0E
22	UVV	0F	284	UVV	0F	22	UVV	0F	284	UVV	0F
	UVV	0F		UVV	0F		UVV	0F		UVV	0F
262	UVV	0F	524	UVV	0F	262	UVV	0F	524	UVV	0F.
263	UVE	0C	525	UVV	0F	263	UVE	0C	525	UVV	0F
264	EE	00	1	EE	00	264	EE	00	1	EE	00
265	EE	00	2	EE	00	265	EE	00	2	EE	00
			3	EE	00				3	EE	00

EE Equalization pulse

SE Half-line vertical sync pulse, half-line equalization pulse

SS Vertical sync pulse

ES Half-line equalization pulse, half-line vertical sync pulse

EB Equalization broad pulse

UBB Black burst UVV Active video

UVE Half-line video, half-line equalization pulse

UBV half-line black, half-line video

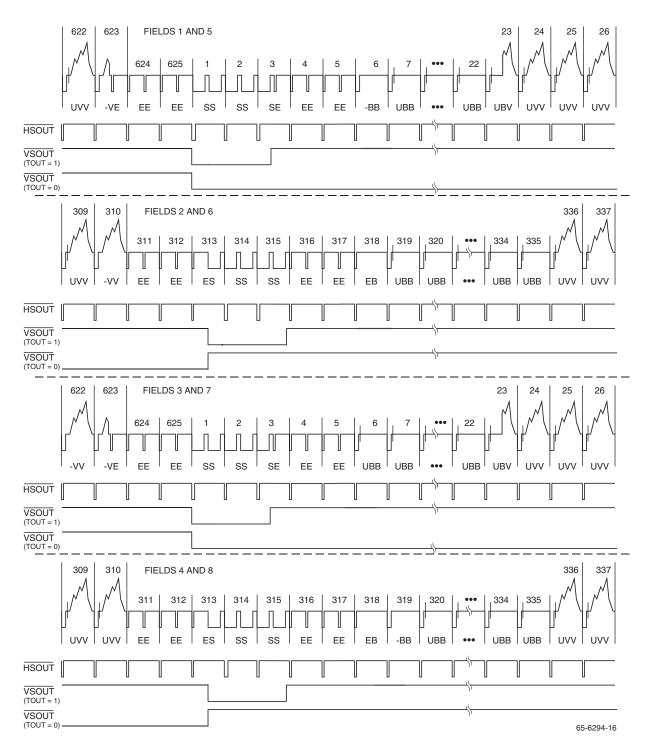


Figure 13. PAL Vertical Interval

Table 9. PAL Field/Line Sequence and Identification

Field 1 & 5 FIELD ID = 000, 100			_	Field 2 & 6 FIELD ID = 001, 111			Field 3 & D ID = 01	-	Field 4 & 8 FIELD ID = 011, 111			
Line	ID	LTYPE	Line	ID	LTYPE	Line	ID	LTYPE	Line	ID	LTYPE	
1	SS	03	313	ES	01	1	SS	03	313	ES	01	
2	SS	03	314	SS	03	2	SS	03	314	SS	03	
3	SE	02	315	SS	03	3	SE	02	315	SS	03	
4	EE	00	316	EE	00	4	EE	00	316	EE	00	
5	EE	00	317	EE	00	5	EE	00	317	EE	00	
6	-BB	05	318	EB	10	6	UBB	0D	318	EB	10	
7	UBB	0D	319	UBB	0D	7	UBB	0D	319	-BB	05	
	UBB	0D	320	UBB	0D		UBB	0D	320	UBB	0D	
22	UBB	0D		UBB	0D	22	UBB	0D		UBB	0D	
23	UBV	0E	334	UBB	0D	23	UBV	0E	334	UBB	0D	
24	UVV	0F	335	UBB	0D	24	UVV	0F	335	UVV	OF.	
25	UVV	0F	336	UVV	0F	25	UVV	0F	336	UVV	0F	
26	UVV	0F	337	UVV	0F	26	UVV	0F	337	UVV	0F	
	UVV	0F		UVV	0F		UVV	0F		UVV	0F	
309	UVV	0F	622	-VV	07	309	UVV	0F	622	UVV	0F	
310	-VV	07	623	-VE	04	310	UVV	0F	623	-VE	04	
311	EE	00	624	EE	00	311	EE	00	624	EE	00	
312	EE	00	625	EE	00	312	EE	00	625	EE	00	

EE Equalization pulse

SE Half-line vertical sync pulse, half-line equalization pulse

SS Vertical sync pulse

ES Half-line equalization pulse, half-line vertical sync pulse

EB Equalization broad pulse

UBB Black burst

-BB Black burst with color burst suppressed

UVV Active video

-VV Active video with color burst suppressed UVE Half-line video, half-line equalization pulse

-VE Half-line video, half-line equalization pulse, color burst suppressed.

UBV half-line black, half-line video

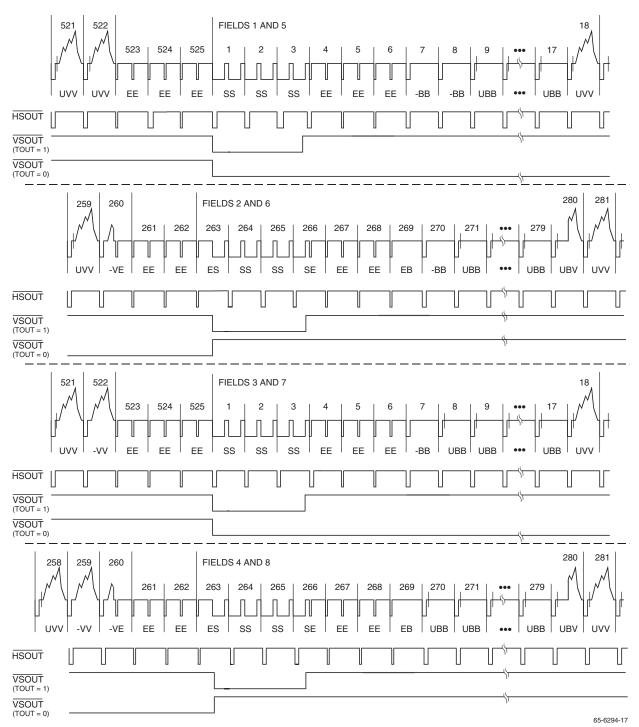


Figure 14. PAL-M Vertical Interval

Table 10. PAL-M Field/Line Sequence and Identification

	ield 1 & D ID = 000			ield 2 & D ID = 00			Field 3 & D ID = 01			8 1, 111	
Line	ID	LTYPE	Line	ID	LTYPE	E Line ID LTYPE		Line	ID	LTYPE	
1	SS	03	263	ES	01	1	SS	03	263	ES	01
2	SS	03	264	SS	03	2	SS	03	264	SS	03
3	SS	03	265	SS	03	3	SS	03	265	SS	03
4	EE	00	266	SE	02	4	EE	00	266	SE	02
5	EE	00	267	EE	00	5	EE	00	267	EE	00
6	EE	00	268	EE	00	6	EE	00	268	EE	00
7	-BB	05	269	EB	10	7	-BB	05	269	EB	10
8	-BB	05	270	-BB	05	8	UBB	05	270	UBB	05
9	UBB	0D	271	UBB	1D	9	UBB	0D	271	UBB	1D
17	UBB	0D	279	UBB	0D	17	UBB	0D	279	UBB	0D
18	UVV	0F	280	UBV	0E.	18	UVV	0F	280	UBV	0E.
			281	UVV	0F		UVV	0F	281	UVV	0F
259	UVV	0F				258	UVV	0F			
260	-VE	04	521	UVV	0F	259	-VV	07	521	UVV	0F
261	EE	00	522	-VV	07	260	-VE	04	522	UVV	0F
262	EE	00	523	EE	00.	261	EE	00	523	EE	00
			524	EE	00	262	EE	00	524	EE	00
			525	EE	00				525	EE	00

EE Equalization pulse

SE Half-line vertical sync pulse, half-line equalization pulse

SS Vertical sync pulse

ES Half-line equalization pulse, half-line vertical sync pulse

EB Equalization broad pulse

UBB Black burst

-BB Black burst with color burst suppressed

UVV Active video

-VV Active video with color burst suppressed UVE Half-line video, half-line equalization pulse

-VE Half-line video, half-line equalization pulse, color burst suppressed.

UBV half-line black, half-line video

Chrominance Processor

Control registers for this section:

Address	Bit(s)	Name
0x06	7-6	FORMAT
0x06	5-3	MODE
0x07	5	DDSRST
0x11	7	DRSSEL
0x18	6	GLKCTL1
0x18	5	GLKCTL0
0x3F	3	GAUSS_BYP
0x40	7-0	FREQL
0x41	7-0	FREQ3
0x42	7-0	FREQ2
0x43	7-0	FREQM
0x44	7-4	SYSPHL
0x45	3-0	SYSPHM
0x46	7-4	BURPHL
0x47	3-0	BURPHM
0x48	7-4	BRSTFULL
0x49	3-0	BRST1
0x4A	7-4	BRST2

Subcarrier Programming

The color subcarrier is produced by an internal 32 bit digital frequency synthesizer which is completely programmable in frequency and phase. Separate registers, FREQx, SYSPHx, BSTPHx, are provided for phase adjustment of the color burst and of the active video, permitting external delay compensation, color adjustment, etc. FREQx is the subcarrier phase step per pixel and SYSPHx is phase offset at field 1, line 1 (line 4 for NTSC), pixel 1.

NTSC Subcarrier

For NTSC encoding, the subcarrier synthesizer frequency has a simple relationship to the pixel clock period, repeating over 2 lines: The decimal value for the subcarrier phase step is:

$$FREQx = \frac{455/2}{pixels/line} \times 2^{32}$$

Where the number of pixels/line is:

$$pixels/line = \frac{PXCK Frequency}{H Period}$$

This value must be converted to binary and split into four 8 bit registers, FREOM, FREO2, FREO3, and FREOL.

PAL Subcarrier

The PAL relationship is more complex, repeating only once in 8 fields (the well-known 25 Hz offset):

FREQx =
$$\frac{(1135/4) + (1/625)}{\text{pixels/line}} \times 2^{32}$$

This value must be converted to binary and split as described previously for NTSC. The number of pixels/line is found as in NTSC.

PAL-M Subcarrier

$$FREQ = \frac{909/4}{pixels/line} \times 2^{32}$$

SYSPHx establishes the appropriate phase relationship between the internal synthesizer and the chroma modulator. The nominal value for SYSPHx is zero.

Other values for SYSPHx must be converted to binary and split into two 8 bit registers, SYSPHM and SYSPHL.

Burst Phase (BURPHx) sets up the correct relative NTSC modulation angle. The value for BURPH is:

BURPHx = SYSPHx

This value must be converted to binary and split into two 8 bit registers, BURPHM and BURPHL.

Table 11. Standard Subcarrier Parameters

								Subc	arrier Regi	ster (hex)			
	Field Rate	Horizontal Freq.	Pixel Rate	PXCK Freq.	Subcarrier Freq.	BURPHM	BURPHL	SYSPHM	SYSPHL	FREQM	FREQ2	FREQ3	FREQL
Standard	(Hz)	(kHz)	(Mpps)	(MHz)	(MHz)	47	46	45	44	43	42	41	40
NTSC sqr. pixel	59.94	15.734266	12.27	24.54	3.57954500	00	00	00	00	4A	AA	AA	AB
NTSC CCIR-601	59.94	15.734266	13.50	27.00	3.57954500	00	00	00	00	43	E0	F8	3E
NTSC 4x FSC	59.94	15.734266	14.32	28.64	3.57954500	00	00	00	00	40	00	00	00
PAL sqr. pixel	50.00	15.625000	14.75	29.50	4.43361875	00	00	00	00	4C	F3	18	19
PAL CCIR-601	50.00	15.625000	13.50	27.00	4.43361875	00	00	00	00	54	13	15	96
PAL 15 Mpps	50.00	15.625000	15.00	30.00	4.43361875	00	00	00	00	4B	AA	C6	A1
PAL-M sqr.pixel	60.00	15.750000	12.50	25.01	3.57561149	00	00	00	00	49	45	00	51
PAL-M CCIR-601	60.00	15,750000	13.50	27.00	3.57561149	00	00	00	00	43	DF	3F	D7
PAL-M 4x FSC	60.00	15,750000	14.30	28.60	3.57561149	00	00	00	00	40	10	66	F5

Subcarrier Synchronization

There are 5 modes of subcarrier synchronization in the TMC2192, freerun, subcarrier reset, Genlock, DRS-lock and Ancillary Data Control (ANC).

Freerun

At the rising edge of \overline{RESET} the DDS starts to generate the subcarrier reference and will continue to freerun the subcarrier. When setting the control register DDSRST is HIGH, the TMC2192 will reset the DDS to the SYSPH value on the next field 1, line 1 (line 4 for NTSC), pixel 1 occurrence and will reset this bit to be LOW. This allows the encoder to start with the correct SCH relationship. The phase of the subcarrier reference will drift over time since a 32 bit accumulator has a error of ± 0.5 Hz when generating the subcarrier reference for NTSC 13.5 MHz.

Subcarrier Reset

At the rising edge of RESET the DDS starts to generate the subcarrier reference and will reset the DDS to the SYSPH value every field 1, line 1 (line 4 for NTSC), pixel 1 occurrence. This enables the encoder to maintain the proper SCH relationship.

Genlock

The Genlock mode allows the TMC2192 to lock to a composite reference when used in conjunction with the TMC22071A Genlocking Video Digitizer. The TMC22071A produces a genlock reference signal (GRS) which contains field identification, PALODD status, relative phase and relative frequency of the composite reference. The GRS is sampled on the CVBS bus 60 PXCK's after the falling edge of $\overline{\rm HSIN}$. The phase and frequency values are used to update the DDS on a line to line basis, thus synchronizing the subcarrier to an external composite reference.

DRS-Lock

The DRS-Lock mode allows the TMC2192 to lock its composite output to the decoded composite or S-video input of

the TMC22x5y. The TMC22x5y produces a decoder reference signal (DRS) which contains field identification, PAL-ODD status, relative phase and relative frequency of the composite or S-video input. The DRS is sampled on either the CVBS bus or the PD port, depending on DRSSEL, 60 PXCK's after the falling edge of HSIN. The phase and frequency values are used to update the DDS on a line to line basis, thus synchronizing the subcarrier to an external composite reference.

• Ancillary Data Control (ANC)

Subcarrier synchronization in ANC mode is covered in the Ancillary Data Control section of this data sheet.

SCH Phase Error Correction

SCH refers to the timing relationship between the 50% point of the leading edge of horizontal sync and the positive or negative zero-crossing of the color burst subcarrier reference. SCH error is usually expressed in degrees of subcarrier phase. In PAL, SCH is defined for line 1 of field 1, but since there is no color burst on line 1, SCH is usually measured at line 7 of field 1. The need to specify SCH relative to a particular line in PAL is due to the 25 Hz offset of PAL subcarrier frequency. Since NTSC has no such 25 Hz offset, SCH applies to all lines.

The SCH relationship is important in the TMC2192 when two video sources are being combined or if the composite video output is externally combined with another video source. In these cases, improper SCH phasing will result in a noticeable horizontal jump of one image with respect to another and/or a change in hue proportional to the SCH error between the two sources.

SCH phasing can be adjusted by modifying BURPH and SYSPH values by equal amounts. SCH is advanced/delayed by one degree by increasing/decreasing the value of BURPH and SYSPH by approximately B6h. An SCH error of 15° is corrected with SYSPH and BURPH offsets of AAAh.

Burst Envelope

The TMC2192 includes the ability to adjust the burst amplitude and the shape of the burst. The Control Registers BRSTFULL, BRST1 and BRST2 hold the magnitude of the burst vector. BRSTFULL is the maximum amplitude of the burst vector. BRST1 and BRST2 determine the intermediate values of the burst vector for the burst envelope shaping. A 5 pixel burst envelope shaping occurs at the rising and falling edges of burst. At the rising edge of burst the next 5 pixels have the following weighting; BRSTFULL – BRST1, BRSTFULL – BRST2, BRSTFULL/2, BRST2, and BRST1. At the falling edge of burst the next 5 pixels have the following weighting; BRST1, BRST2, BRSTFULL/2, BRSTFULL – BRST2, and BRSTFULL – BRST1. With this flexibility the user determine the shape, amplitude and width of the burst signal.

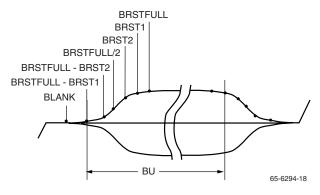


Figure 15. Burst Envelope

Color-Difference Low-Pass Filters

The chrominance portion of a composite video signal must be sufficiently bandlimited to avoid cross-color and crossluminance distortion, and to preclude exceeding the allowable bandwidth of a video channel.

The color-difference low-pass filters on the TMC2192 establish chrominance bandwidths which meet the specifications outlined in CCIR Report 624-3, Table II, Item 2.6, for system I over a range of pixel rates from 12.27 Mpps to 14.75 Mpps. Equal bandwidth is established for both color-difference channels.

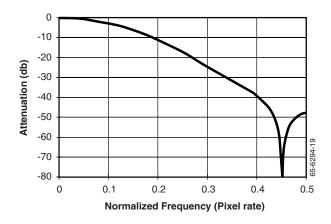


Figure 16. Gaussian Filter Response

Sync and Pedestal Insertion

Control Registers for this section

Address	Bit(s)	Name
0x06	7-6	MODE
0x11	5	COMP2DB
0x14	7-0	VBIPEDEM
0x15	7-0	VBIPEDEL
0x16	7-0	VBIPEDOM
0x17	7-0	VBIPENOL
0x1A	6-0	PEDHGT1
0x3F	3	C2DB_OFF

Pedestal Enable

The TMC2192 has the ability to independently select lines for pedestal insertion during the vertical blanking interval (VBI). For 525-line systems and using the NTSC line numbering convention, in which the first vertical serration is on line 4 for field 1 and line 266 for field 2, the vertical interval lines map to the control registers VBIPEDxy as shown in Table 15.

Table 12. Line by Line Pedestal Enable

Bit	7	6	5	4	3	2	1	0
VBIPEDEL	17	16	15	14	13	12	11	10
VBIPEDEM	25*	24	23	22	21	20	19	18
VBIPEDOL	279	278	277	276	275	274	273	
VBIPEDOM	287*	286	285	284	283	282	281	280

Enabling the pedestal on line 25 enables it for the remainder of field 1, to line 262. Likewise, enabling the pedestal on line 288 enables it for the remainder of field 2.

Pedestal Height

PEDHGT1 determines the height of the pedestal for the luminance channel on the composite path. The range of the pedestal height is from -22.1 to 21.74 IRE in .345 IRE increments.

Sync and Blank Insertion

The composite paths blank and sync D/A codes are determined by the FORMAT control register. For NTSC and PAL-M formats the blank D/A code is 240 (295 mV) and the sync D/A code is 8 (9 mV). For all other PAL formats the blank D/A code is 256 (314 mV) and the sync D/A code is 12 (14 mV).

In all cases the sync edges are sloped to insure the proper rise and fall times in all video standards.

Closed Caption Insertion

Control Registers for this section

Address	Bit(s)	Name
0x1C	7-6	CCD1
0x1D	1-0	CCD2
0x1E	7	CCON
0x1E	6	CCRTS
0x1E	5	CCPAR
0x1E	4	CCFLD
0x1E	3–0	CCLINE

The TMC2192 includes a flexible closed-caption processor. It may be programmed to insert a closed caption signal on any line within a range of 16 lines on ODD and/or EVEN fields. Closed Caption insertion overrides all other configurations of the encoder: if it is specified on an active video line, it takes precedence over the video data and removes NTSC setup if setup has been programmed for the active video lines. Closed Caption is only available when the TMC2192 is in a 13.5 MHz pixel rate.

Closed caption is turned on by setting CCON HIGH. Whenever the encoder begins producing a line specified by CCFLD and CCLINE, it will insert a closed caption line in its place. If CCRTS is HIGH, the data contained in CCDx will be sent. IF CCRTS is LOW, Null bytes (hex 00 with ODD parity) will be sent.

Line Selection

The line to contain CC data is selected by a combination of the CCFLD bit and the CCLINE bits. CCLINE is added to the offset shown in Table 16 to specify the line.

Table 13. Closed Caption Line Selection

Standard	Offset	Field	Lines
525	12	ODD	12-27
	274	EVEN	274-289
625	16	ODD	16-31
	328	EVEN	328-343

Parity Generation

Standard Closed-Caption signals employ ODD parity, which may be automatically generated by setting CCPAR HIGH. Alternatively, parity may be generated externally as part of the bytes to be transmitted, and, with CCPAR LOW, the entire 16 bits loaded into the CCDx registers will be sent unchanged.

Operating Sequence

A typical operational sequence for closed-caption insertion on line xx is:

Read Register 1E and check that bit 7 is LOW, indicating that the CCDx registers are ready to accept data.

If ready, write two bytes of CC data into registers 1C and 1D.

Write into register 1E the proper combination of CCFLD and CCLINE. CCPAR may be written as desired. Set CCRTS HIGH.

The CC data is transmitted during the specified line.

As soon as CCDx s transferred into the CC processor (and CCRTS goes LOW), new data may be loaded into registers 1C and 1D. This allows the user to transmit CC data on several consecutive lines by loading data for line n+1 while data is being sent on line n.

Interpolation Filters

Each video output on the TMC2192 is digitally filtered with sharp-cutoff low-pass interpolation filters. These filters ensure that the frequency band above base-band video and below the pixel frequency (fg/4 to 3fg/4, where fg is the PXCK frequency) are sufficiently suppressed.

Since these are fixed-coefficient digital filters, their filter characteristics depend upon clock rate.

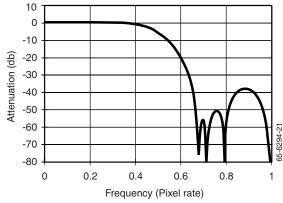


Figure 17. Interpolation Filter

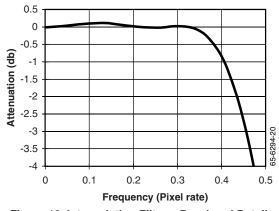


Figure 18. Interpolation Filter – Passband Detail

x/Sin(x) Filter

Control Registers for this section

Address	Bit(s)	Name
0x11	4	SINEN

The TMC2192 contains a selectable $X/\sin(X)$ filter prior to each DAC. The $X/\sin(X)$ filter boosts the high frequency data to negate the $\sin(X)/X$ roll-off associated with D/A converters.

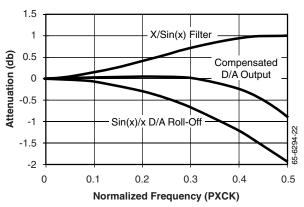


Figure 19. X/SIN(X) Filter

Output Data Formats

Control Registers for this section

Address	Bit(s)	Name
0x10	5	LUMADIS
0x10	6	CHROMADIS
0x10	7	COMPDIS
0x3F	7	SEL_CLK
0x3F	4	SEL_PIX

Analog outputs of the TMC2192 are driven by three 10 bit D/A converters, operating at twice the pixel rate. The outputs drive standard video levels into 37.5 or 75 Ohm loads. An internal voltage reference is used to provide reference current for the D/A converters. For more accurate levels, an external fixed or variable voltage reference source is accommodated. The video signal levels from the TMC2192 may be adjusted by varying the common Vref or the 3 independent Rrefs. Each video D/A converter has an independent reference resistor that can adjust the output gain. D/A Matching is achieved by trimming the each external reference resistor of each D/A.

Digital Composite Output

In addition, the TMC2192 supplies a 10 bit digital composite signal on pins D[7:0] and FLD[2:1]. The digital composite output can be either an interpolated signal on a non-interpolated signal, this controlled by the control register SEL_CLK.

Ancillary Data

Control Registers for this section

Address	Bit(s)	Name
0x07	2	ANCFREN
0x07	1	ANCPHEN
0x07	0	ANCTREN
0x08	7-0	ANCID

The TMC2192 is designed to accept 15 words of ancillary data after the active video pixels at the end of each horizontal line. Ancillary data may occur once per line, once per field, once per eight fields, on random lines, or not al all. The TMC2192 does not assume ancillary data is present on a regular basis.

Table 14. Ancillary Data Format

Word ID	Description	В7	B ₆	B ₅	B4	Вз	B ₂	B ₁	B ₀
ANC2	Ancillary Data Header (Timing	0	0	0	0	0	0	0	0
ANC1	Reference Signal)	1	1	1	1	1	1	1	1
ANC0		1	1	1	1	1	1	1	1
TT	Data Type	TT6	TT5	TT4	TT3	TT2	TT1	TT0	Р
MM	Word	0	D11	D10	D9	D8	D7	D6	Р
LL	Count	0	D5	D4	D3	D2	D1	D0	Р
FIELD	Field ID/Synchronous Video Flag	х	х	х	SVF	F2	F1	F0	Р
	reserved	х	Х	х	Х	Х	Х	х	Р
PH1	Subcarrier Phase	PHV	PH ₁₂	PH ₁₁	PH ₁₀	PH ₉	PH ₈	PH ₇	Р
PH0		PH ₆	PH ₅	PH4	РНз	PH ₂	PH ₁	PH ₀	Р
FR4	Subcarrier Frequency	FRV	х	х	FR ₃₁	FR ₃₀	FR ₂₉	FR ₂₈	Р
FR3		FR ₂₇	FR ₂₆	FR25	FR ₂₄	FR23	FR22	FR21	Р
FR2		FR ₂₀	FR ₁₉	FR ₁₈	FR ₁₇	FR ₁₆	FR ₁₅	FR ₁₄	Р
FR1		FR13	FR ₁₂	FR11	FR ₁₀	FR9	FR8	FR ₇	Р
FR0		FR ₆	FR ₅	FR ₄	FR ₃	FR ₂	FR ₁	FR ₀	Р

Note:

1. P = odd parity bit, x = reserved bit will be ignored

The first three words of ancillary data comprise the TRS signal (ANC2-0) which indicates the end of active video. Also known as the Ancillary data header, the TRS signal is a 00h, FFh, FFh sequence. Except for the TRS words, ancillary data bit 0 (B0, LSB) is odd parity for B7-1.

The data type word (TT) is used to specify the ancillary data type. The TMC2192 compares this 7 bit value with the contents of the ANCID control register. If there is a match, the ancillary data will be processed. If there is no match, the TMC2192 ignores ancillary data.

The word count data (D₁₁₋₀ in MM, LL) in the ancillary data packet indicate the number of words in ancillary data.

Ancillary phase data is used to program the MSBs of the PHASE register. ANCPHEN and PHV determine how ancillary phase data is used. When ancillary data is not present, the TMC2192 assumes PHV = LOW.

Table 15. Ancillary Data Control - Phase

ANCPHEN	PHV	Description
0	х	Ignore ancillary phase data, set PHASE = 0
1	0	Ignore ancillary phase data, no change to PHASE
1	1	Load ancillary phase data into PHASE registers

Ancillary frequency data is used to program the 32 bits of the FREQ3-0 registers. ANCFREN and FRV determine how

ancillary frequency data is used. When ancillary data is not present, the TMC2192 assumes FRV = LOW.

Table 16. Ancillary Data Control Frequency

ANCFREN	FRV	Description
0	х	Ignore ancillary frequency data
1	0	Ignore ancillary frequency data
1	1	Load ancillary frequency data into FREQ3-0 registers

Table 17. Field Identification and Subcarrier Reset Modes

ANCTREN	SVF	F2	F1	F ₀	F (EAV)	Field ID / Subcarrier Reset Mode
Basic Mode	!	!	!	!	!	
0	х	х	х	х	0	Odd field, reset subcarrier every 8 fields
0	х	х	х	х	1	Even field
Genlocking Mo	ode	•			•	
1	1	х	х	х	0	Odd field, subcarrier free run
1	1	х	х	х	1	Even field
Field Sequenc	e Mode		1		1	
1	0	0	0	0	0	Field 1, reset subcarrier at field 1
1	0	0	0	1	1	Field 2
1	0	0	1	0	0	Field 3
1	0	0	1	1	1	Field 4
1	0	1	0	0	0	Field 5
1	0	1	0	1	1	Field 6
1	0	1	1	0	0	Field 7
1	0	1	1	1	1	Field 8

Note:

Operating Modes

The field number bits (F₂₋₀) from the ancillary data packet FIELD word, are used to program the encoder's field counter depending upon the state of the synchronous video flag (\overline{SVF}) and the ANCTREN bit in the control register.

In the basic operating mode (ANCTREN = LOW), all timing is found in the F bit of EAV. F_{2-0} and \overline{SVF} are ignored and the encoder subcarrier synthesizer is reset to the PHASE value every eight fields (when the field counter transitions from 111 (field 8) to 000 (field 1).

In the basic mode, ANCFREN and ANCPHEN are typically set LOW, ignoring ancillary frequency and phase data. If ANCFREN and ANCPHEN are HIGH, the TMC2192 uses the incoming ancillary frequency and phase data on a line-by-line basis.

In genlocking mode (ANCTREN and \overline{SVF} = HIGH), the subcarrier synthesizer is allowed to free run, with phase and frequency being set from the ancillary data packet PH₁₂₋₀ and FR₃₁₋₀ data. The field counter increments just like it does in basic mode.

Field sequence mode (ANCTREN = HIGH and \overline{SVF} = LOW), is the same as basic mode except that the field counter is set by the F₂₋₀ bits in the FIELD word of ancillary data. If ancillary data is not present on a line, the field counter will continue to count as it does in basic mode. When ancillary data is present, the contents of the field counter are loaded with field data (F₂₋₀). In this way, the TMC2192 may be synchronized with an external source by sending field data only once.

^{1.} The F bit is part of the EAV timing reference code and tracks the F0 bit.

Layering Engine

Control Registers for this section

Address	Bit(s)	Name
0x04	2	SKEN
0x05	3-2	OMIX
0x07	6	SKFLIP
0x09	7	HKEN
0x09	6	BUKEN
0x09	5	SKEXT
0x09	4	DKDIS
0x09	3	EKDIS
0x09	2	FKDIS
0x09	1-0	LAYMODE

Address	Bit(s)	Name
0x0A	7-0	DKEYMAX
0x0B	7-0	DKEYMIN
0x0C	7-0	EKEYMAX
0x0D	7-0	EKEYMIN
0x0E	7-0	FKEYMAX
0x0F	7-0	FKEYMIN

The TMC2192 features a robust layering engine with three possible input layers controlled by two keying controls. The layer assignments are shown in Table 22, along with the keying control. The keying controls, KEY pin or OL4-0 are aligned with the incoming pixel data stream and are then delayed throughout the chip to be continuously aligned with the input video streams. A generic overview of the keying and layering features is shown in Figure 21.

Table 18. Layering and Keying Modes

LAYMODE	BACKGROUND	MIDG	ROUND	FOREGROUND	
	Image Source	Image Source	Keying Control	Image Source	Keying Control
0	PD	OVERLAY	OL4-0	CVBS	KEY or Data Key
1	PD	CVBS	KEY or Data Key	OVERLAY	OL4-0
2	CVBS	OVERLAY	OL4-0	PD	KEY or Data Key
3	CVBS	PD	KEY or Data Key	OVERLAY	OL4-0

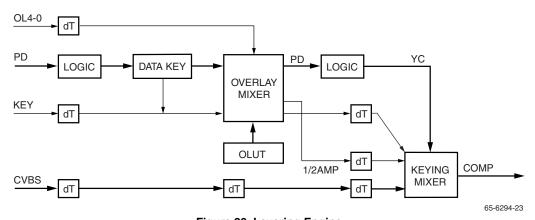


Figure 20. Layering Engine

Overlay Mixer

The OL[4:0] bus provides the ability to overlay 30 different 24 bit values onto the pixel data path. The 24 bit overlay colors must be the same format as the incoming Pixel data. For Y,Cb,Cr input formats the range of Y values spans the entire range of the format, 1 to 254, this enables super whites and super blacks in the overlay palette.

When OL[4:0] is equal to 00h the pixel data port to be the output of the overlay mixer. If OL[4:0] is in the range of 1 to 31 then the output source is one of 30 possible overlay col-

ors, see Table 22. Overlay Address Map. When OL4-0 equal to 16, the overlay mixer produces a pixel data output with half the luminance magnitude and chrominance magnitude. Any OL4-0 value greater than 16 will result in a overlay mix with a full amplitude overlay and the pixel data with half amplitude pixel data (PD) or half amplitude CVBS data as its values. This allows for transparent overlays or produce shadow boxes around overlaid text.

The midpoint of the rising and falling edges on the mixed output is determined by the transition of the OL[4:0] pins in

relation to the PD port. Control register OMIX chooses among the following set of coefficients; either $0\,1/8\,1/2\,7/8\,1,0\,1/2\,1$, or $0\,1$ to switch between the PD port and the over-

lay color. The timing diagram in Figure 22 identifies the three possible output formats that the mixer can produce.

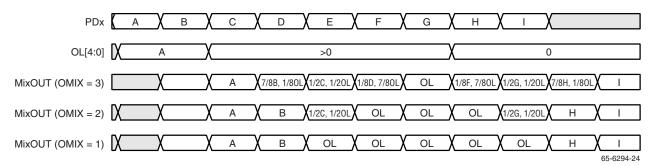


Figure 21. Overlay Outputs

Table 19. Overlay Address Map

OL4-0	Result		
0	Pixel data is passed through overlay mixer.		
1-15	Overlay is mixed with PD or CVBS at the transitions.		
16	Half amplitude PD or half amplitude CVBS is the output of COMP2.		
17-31	Overlay is mixed with half amplitude PD or half amplitude CVBS at the transitions.		

Hardware Keying

The KEY input switches the input to the Comp data path between the composite video generated from the PD port and the CVBS data bus on a pixel-by-pixel basis. This is a "soft" switch is executed over 3 PCK periods to minimize out-of-band transients. Keying is accomplished in the digital composite video domain. The coefficients for the mix are 0, 1/8, 1/2, 7/8, and 1. The COMP output is the final output for all overlay functions.

Hardware keying is enabled by the key Control Register HKEN. Normally, keying is only effective during the active video portion of the encoded video line (as determined by Control Register VA). That is, the horizontal blanking interval is generated by the encoder even if the KEY signal is held HIGH through horizontal blanking. However, it is possible to allow digital horizontal blanking to be passed through from the CVBS bus to the COMP output by setting key Control Register BUKEN HIGH. In this mode, KEY is always active, and may be exercised at will.

The KEY input is registered into the encoder just as Pixel data is clocked into the PD port. It is internally pipelined, so the midpoint of the KEY transition occurs at the output of the pixel that was input at the same time at the KEY signal.

Data Keying

Data keying for each channel Y, C_b, and C_r, is separately enabled or disabled by the control registers DKEYDIS, EKEYDIS, and FKEYDIS. On each channel the eight (8) MSBs of the pixel data are compared against a maximum

key value and a minimum key value. If the pixel data is greater than xKEYMIN and less than or equal to xKEYMAX, then a key match is signaled for that channel.

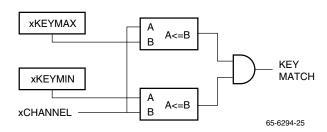


Figure 22. Data Keying

By allowing a window of possible key values on each channel the TMC2192 opens a key cube in the color space.

Parallel Microprocessor Interface

The parallel microprocessor interface is active when \overline{SER} is HIGH and employs a 12-line interface; an 8 bit data bus and 2 bit address location, 1 bit read/write select, and a chip select controlling the timing. Two addresses are required for device programming, one to the pointer and one to the data location. When writing, the address is presented along with a LOW on the R/ \overline{W} pin during the falling edge of \overline{CS} . Eight bits of data are presented on D7-0 during the subsequent rising edge of \overline{CS} .

In read mode, the address is accompanied by a HIGH on the R/\overline{W} pin during a falling edge of \overline{CS} . The data output pins go to a low-impedance state tDOZ after \overline{CS} falls. Valid data are present on D7-0 tDOM after the falling edge of \overline{CS} . Because this port operates asynchronously with the pixel timing, there is an uncertainty in this data valid output delay of one PXCK period. This uncertainty does not apply to tDOZ.

Writing data to specific control registers of the TMC2192 requires that the 8 bit address of the control register of interest be written prior to the data. This control register address is the base address for subsequent write operations. The base address auto increments by one for each byte of data written after the data byte intended for the base address. If more bytes are transferred than there are available addresses, the address will not increment and remain at its maximum value of 4Ch.

Writing data to specific OLUT location of the TMC2192 requires that the 8 bit address of the OLUT location of interest be written prior to the data sequence. This OLUT location address is the base address for subsequent write operations. The base address auto increments by one for each sequence of three (3) bytes of data written after the data byte intended for the base address. The sequence of data

transfer is Y, C_b , C_r , after the C_r byte is transferred the base address will increment by one (1).

Table 20. Parallel Port Control

A ₁₋₀	R/W	Action
00	0	Load D ₇₋₀ into Control Register pointer (block 0)
00	1	Read Control Register pointer on D7-0
01	0	Load D ₇₋₀ into addressed OLUT Location pointer (block 0)
01	1	Read addressed OLUT Location pointer on D ₇₋₀ .
10	0	Write D ₇₋₀ to addressed Control Register
10	1	Read addressed Control Register on D ₇₋₀
11	0	Write D ₇₋₀ to addressed OLUT Location
11	1	Read addressed OLUT Location on D ₇₋₀

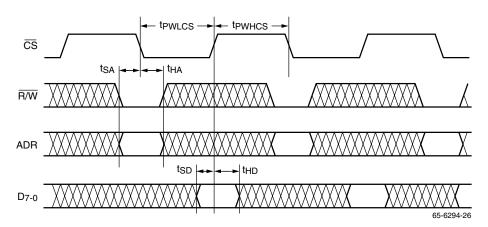


Figure 23. Microprocessor Parallel Port - Write Timing

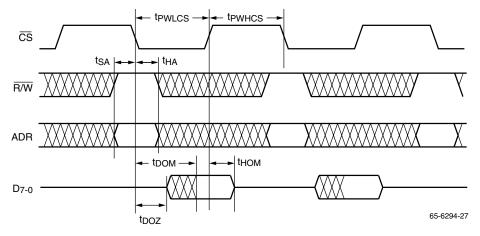


Figure 24. Microprocessor Parallel Port - Read Timing

Serial Control Port (R-Bus)

In addition to the 12-wire parallel port, a 2-wire serial control interface is provided, active when \overline{SER} is LOW. Either port alone can control the entire chip. Up to four TMC2192 devices may be connected to the 2-wire serial interface with each device having a unique address.

The 2-wire interface comprises a clock (SCL) and a bi-directional data (SDA) pin. The encoder acts as a slave for receiving and transmitting data over the serial interface. When the serial interface is not active, the logic levels on SCL and SDA need to be pulled HIGH by external pull-up resistors.

Data received or transmitted on the SDA line must be stable for the duration of the positive-going SCL pulse. Data on SDA must change only when SCL is LOW. If SDA changes state while SCL is HIGH, the serial interface interprets that action as a start or stop sequence.

There are six components to serial bus operation:

- · Start signal
- · Slave address byte
- · Block Pointer
- · Offset Pointer
- · Data byte to read or write
- · Stop signal

When the serial interface is inactive (SCL and SDA are HIGH) communications are initiated by sending a start signal. The start signal is a HIGH-to-LOW transition on SDA while SCL is HIGH. This signal alerts all slaved devices that a data transfer sequence is coming.

The first eight bits of data transferred after a start signal comprise a seven bit slave address and a single R/W bit. The R/W

bit indicates the direction of data transfer, read from or write to the slave device. If the transmitted slave address matches the address of the device (set by the state of the SA1-0 input pins in Table 24), the TMC2192 acknowledges by bringing SDA LOW on the 9th SCL pulse. If the addresses do not match, the TMC2192 will not acknowledge.

Table 21. Serial Port Addresses

A 6	A 5	A 4	А3	A2	A1 (SA1)	A0 (SA0)
1	0	1	0	1	0	0
1	0	1	0	1	0	1
1	0	1	0	1	1	0
1	0	1	0	1	1	1

Data Transfer via Serial Interface

For each byte of data read or written, the MSB is the first bit of the sequence.

If the TMC2192 does not acknowledge the master device during a write sequence, the SDA remains HIGH so the master can generate a stop signal. If the master device does not acknowledge the TMC2192 during a read sequence, the encoder interprets this as "end of data".

Writing data to specific control registers of the TMC2192 requires that the 8 bit address of the control register of interest be written after the slave address has been established. This control register address is the base address for subsequent write operations. The base address auto increments by one for each byte of data written after the data byte intended for the base address.

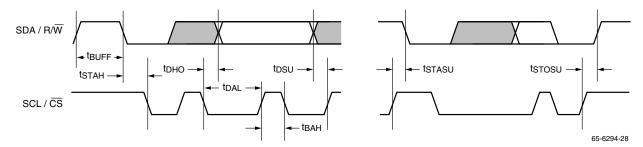


Figure 25. Serial Port Read/Write Timing

Data are read from the control registers of the TMC2192 in a similar manner. Reading requires two data transfer operations:

The base address must be written with the R/W bit of the slave address byte LOW to set up a sequential read operation.

Reading (the R/W bit of the slave address byte HIGH) begins at the previously established base address. The address of the read register auto increments after each byte is transferred.

To terminate a write sequence to the TMC2192, a stop signal must be sent. A stop signal comprises a LOW-to-HIGH transition of SDA while SCL is HIGH. To terminate a read

sequence simply do not acknowledge (NOACK) the last byte received and the TMC2192 will terminate the sequence.

A repeated start signal occurs when the master device driving the serial interface generates a start signal without first

generating a stop signal to terminate the current communication. This is used to change the mode of communication (read, write) between the slave and master without releasing the serial interface lines.

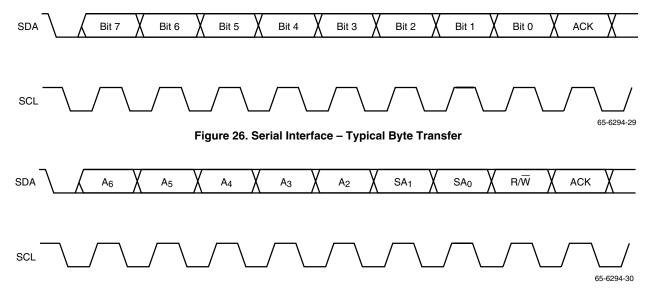


Figure 27. Serial Interface - Chip Address

Serial Interface Read/Write Examples

Write to one control register

- Start signal
- Slave Address byte (R/W bit = LOW)
- Block Pointer (00)
- Offset Pointer
- · Data byte to base address
- Stop signal

Write to four consecutive control registers

- · Start signal
- Slave Address byte (R/W bit = LOW)
- Block Pointer (00)
- · Offset Pointer
- · Data byte to base address
- Data byte to (base address + 1)
- Data byte to (base address + 2)
- Data byte to (base address + 3)
- · Stop signal

Write to one OLUT location

- Start signal
- Slave Address byte (R/W bit = LOW)
- Block Pointer (01)
- Offset Pointer (base address)
- Data byte to base address (Y)
- Data byte to base address (Cb)
- Data byte to base address (Cr)
- · Stop signal

Write to four consecutive OLUT locations

- Start signal
- Slave Address byte (R/W bit = LOW)
- Block Pointer (01)
- Offset Pointer (base address)
- Data byte to base address (Y)
- Data byte to base address (Cb)
- Data byte to base address (Cr)
- Data byte to base address +1 (Y)
- Data byte to base address +1 (Cb)
- Data byte to base address +1 (Cr)
- Data byte to base address +2(Y)Data byte to base address +2 (Cb)
- Data byte to base address +2 (Cr)
- Data byte to base address +3 (Y)
- Data byte to base address +3 (Cb)
- Data byte to base address +3 (Cr)
- Stop signal

Read from one control register

- Start signal
- Slave Address byte (R/W bit = LOW)
- Block Pointer (00)
- Offset Pointer
- Stop signal
- Start signal
- Slave Address byte (R/W bit = HIGH)
- Data byte from base address
- NOACK

Read from four consecutive control registers

- Start signal
- Slave Address byte (R/W bit = LOW)
- Block Pointer (00)
- · Offset Pointer
- Stop signal
- Start signal

- Slave Address byte (R/W bit = HIGH)
- Data byte from base address
- Data byte from (base address + 1)
- Data byte from (base address + 2)
- Data byte from (base address + 3)
- NOACK

Control Register Map

Table 22. Control Register Map

TMC2192 Identification Registers (Read only) 1	Reg	Bit	Mnemonic	Function			
01 7-0 PARTID1 Reads back 21h 02 7-0 PARTID0 Reads back 92h 03 7-0 REVID Silicon revision # Gamma Filters Register 04 7-4 Reserved Set to Low 04 3 SRESET Software RESET 04 2 SKEN Data KEY Enable 04 1-0 PDRM Pixel Data Ramping Mode Input Format Register 05 7 D10FF YCBCR Input Formatting 05 6 Reserved Program Low 05 6 Reserved Program Low 05 7-4 INMODE Input Mode Select 05 3-2 OMIX Overlay Mixer Select General Control Register General Control Register O5 6-FORMAT Video Format 06 7-6 FORMAT Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Delay Control		TMC2192 Identification Registers (Read only)					
O2 7-0 PARTIDO Reads back 92h	00	7-0	PARTID2	Reads back 97h			
Gamma Filters Register 04 7-4 Reserved Set to Low 04 3 SRESET Software RESET 04 2 SKEN Data KEY Enable 04 1-0 PDRM Pixel Data Ramping Mode Input Format Register 05 7 D10FF YCBCR Input Formatting 05 6 Reserved Program Low 05 5-4 INMODE Input Mode Select 05 3-2 OMIX Overlay Mixer Select 05 1-0 SOURCE Video Input Select General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register	01	7-0	PARTID1	Reads back 21h			
Gamma Filters Register 04 7-4 Reserved Set to Low 04 3 SRESET Software RESET 04 1-0 PDRM Pixel Data Ramping Mode Input Format Register 05 7 D10FF YCBCR Input Formatting 05 6 Reserved Program Low 05 5-4 INMODE Input Mode Select 05 3-2 OMIX Overlay Mixer Select 05 1-0 SOURCE Video Input Select General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 1 ANCPHEN Ancillary Frequency Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register	02	7-0	PARTID0	Reads back 92h			
047-4ReservedSet to Low043SRESETSoftware RESET042SKENData KEY Enable041-0PDRMPixel Data Ramping ModeInput Format Register057D10FFYCBCR Input Formatting056ReservedProgram Low055-4INMODEInput Mode Select053-2OMIXOverlay Mixer Select051-0SOURCEVideo Input SelectGeneral Control Register067-6FORMATVideo Format065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output Control060TSOUTExternal Sync Delay ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification	03	7-0	REVID	Silicon revision #			
043\$\overline{\text{SRESET}}\$Software RESET042\$\overline{\text{SKN}}\$Data KEY Enable041-0PDRMPixel Data Ramping ModeInput Format Register057D10FFYCBCR Input Formatting056ReservedProgram Low055-4INMODEInput Mode Select053-2OMIXOverlay Mixer SelectGeneral Control Register067-6FORMATVideo Input Select067-6FORMATVideo Format065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output Control060TSOUTExternal Sync Delay ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification			Gamma	Filters Register			
042SKENData KEY Enable041-0PDRMPixel Data Ramping ModeInput Format Register057D10FFYCBCR Input Formatting056ReservedProgram Low055-4INMODEInput Mode Select053-2OMIXOverlay Mixer SelectGeneral Control Register067-6FORMATVideo Input SelectGeneral Control Register065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable071ANCPHENAncillary Phase Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification	04	7-4	Reserved	Set to Low			
Input Format Register	04	3	SRESET	Software RESET			
Input Format Register 05 7 D10FF YCBCR Input Formatting 05 6 Reserved Program Low 05 5-4 INMODE Input Mode Select 05 3-2 OMIX Overlay Mixer Select 05 1-0 SOURCE Video Input Select General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	04	2	SKEN	Data KEY Enable			
057D10FFYCBCR Input Formatting056ReservedProgram Low055-4INMODEInput Mode Select053-2OMIXOverlay Mixer Select051-0SOURCEVideo Input SelectGeneral Control Register067-6FORMATVideo Format065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output Control060TSOUTExternal Sync Delay ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable071ANCPHENAncillary Phase Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification	04	1-0	PDRM	Pixel Data Ramping Mode			
05 6 Reserved Program Low 05 5-4 INMODE Input Mode Select 05 3-2 OMIX Overlay Mixer Select 05 1-0 SOURCE Video Input Select General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Phase Enable 07 1 ANCPHEN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification			Input Fo	ormat Register			
05 5-4 INMODE Input Mode Select 05 3-2 OMIX Overlay Mixer Select 05 1-0 SOURCE Video Input Select General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Phase Enable 07 1 ANCPHEN Ancillary Timing Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register	05	7	D10FF	YCBCR Input Formatting			
053-2OMIXOverlay Mixer SelectGeneral Control RegisterGeneral Control Register067-6FORMATVideo Format065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable071ANCPHENAncillary Phase Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification	05	6	Reserved	Program Low			
General Control Register General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	05	5-4	INMODE	Input Mode Select			
General Control Register 06 7-6 FORMAT Video Format 06 5-3 MODE Video Mode 06 2 PDCDIR PDC Directional Control 06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register	05	3-2	OMIX	Overlay Mixer Select			
067-6FORMATVideo Format065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable071ANCPHENAncillary Phase Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification	05	1-0	SOURCE	Video Input Select			
065-3MODEVideo Mode062PDCDIRPDC Directional Control061TOUTExternal Sync Output Control060TSOUTExternal Sync Delay ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable071ANCPHENAncillary Phase Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification			General (Control Register			
062PDCDIRPDC Directional Control061TOUTExternal Sync Output ControlHorizontal Ancillary Data Control Register077LDFIDField Lock Select076SKFLIPSoft Key Inversion075DDSRSTDDS Reset074-3Reserved072ANCFRENAncillary Frequency Enable071ANCPHENAncillary Phase Enable070ANCTRENAncillary Timing EnableAncillary Data ID Register087-0ANCIDAncillary Data Identification	06	7-6	FORMAT	Video Format			
06 1 TOUT External Sync Output Control 06 0 TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	06	5-3	MODE	Video Mode			
TSOUT External Sync Delay Control Horizontal Ancillary Data Control Register 07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	06	2	PDCDIR	PDC Directional Control			
Horizontal Ancillary Data Control Register 7 LDFID Field Lock Select 7 6 SKFLIP Soft Key Inversion 7 5 DDSRST DDS Reset 7 4-3 Reserved 7 2 ANCFREN Ancillary Frequency Enable 7 1 ANCPHEN Ancillary Phase Enable 7 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 8 7-0 ANCID Ancillary Data Identification	06	1	TOUT	External Sync Output Control			
07 7 LDFID Field Lock Select 07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	06	0	TSOUT	External Sync Delay Control			
07 6 SKFLIP Soft Key Inversion 07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification		Нс	orizontal Ancilla	ry Data Control Register			
07 5 DDSRST DDS Reset 07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	07	7	LDFID	Field Lock Select			
07 4-3 Reserved 07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	07	6	SKFLIP	Soft Key Inversion			
07 2 ANCFREN Ancillary Frequency Enable 07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	07	5	DDSRST	DDS Reset			
07 1 ANCPHEN Ancillary Phase Enable 07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	07	4-3	Reserved				
07 0 ANCTREN Ancillary Timing Enable Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	07	2	ANCFREN	Ancillary Frequency Enable			
Ancillary Data ID Register 08 7-0 ANCID Ancillary Data Identification	07	1	ANCPHEN	Ancillary Phase Enable			
08 7-0 ANCID Ancillary Data Identification	07	0	ANCTREN	Ancillary Timing Enable			
			Ancillary	Data ID Register			
Keving/Overlay Engine	08	7-0	ANCID	Ancillary Data Identification			
Noying, Ovolidy Engine			Keying/	Overlay Engine			
09 7 HKEN Hardware KEY Enable	09	7	HKEN	Hardware KEY Enable			

Reg	Bit	Mnemonic	Function
09	6	BUKEN	Burst KEY Enable
09	5	SKEXT	Data KEY Operation Select
09	4	DKDIS	Green/Y Data KEY Disable
09	3	EKDIS	Blue/C _B Data KEY Disable
09	2	FKDIS	Red/CR Data KEY Disable
09	1-0	LAYMODE	Layer Assignment Select
		Key Va	lue Registers
0A	7-0	DKEYMAX	Green/Y Maximum Data Key Value
OB	7-0	DKEYMIN	Green/Y Minimum Data Key Value
OC	7-0	EKEYMAX	Blue/C _B Maximum Data Key Value
0D	7-0	EKEYMIN	Blue/C _B Minimum Data Key Value
0E	7-0	FKEYMAX	Red/C _R Maximum Data Key Value
0F	7-0	FKEYMIN	Red/C _R Minimum Data Key Value
		DAC Co	ntrol Registers
10	7	COMPDIS	D/A #4 Disable
10	6	CHROMADIS	D/A #3 Disable
10	5	LUMADIS	D/A #2 Disable
10	4-3	Reserved	Set to 0.
10	2	OLUTDIS	Overlay LUT Disable
10	1-0	Reserved	Program Low
11	7	DRSSEL	DRS Selection
11	6	Reserved	Program Low
11	5	COMP2DB	Composite 2 Overflow Control
11	4	SINEN	X/Sin(x) Filter Enable
11	3	Reserved	Program Low
11	2	LUMDIS	Luma Disable
11	1	CHRMDIS	Chroma Disable
11	0	BURSTDIS	Burst Disable

Table 22. Control Register Map (continued)

Reg	Bit	Mnemonic	Function		
VBI Ped Enable Registers					
14	7-0	VBIPEDEM	VBI Pedestal Enable, Even Fields		
15	7-0	VBIPEDEL	VBI Pedestal Enable, Even Fields		
16	7-0	VBIPEDOM	VBI Pedestal Enable, Odd Fields		
17	7-1	VBIPEDOL	VBI Pedestal Enable, Odd Fields		
17	0	HVA	Horizontal and Vertical Sync Alignment		
	Ve	rtical Blanking l	Interval Enable Registers		
18	7	Reserved	Program Low		
18	6	GLKCTL1	Genlock Control Register 1		
18	5	GLKCTL0	Genlock Control Register 0		
18	4-0	VBIENF1	VBI Active Video Enable, Field 1		
19	7	SHORT	Test Register		
19	6	T512	EH/SL Offset Control Bit		
19	5	HALFEN	Half Line Enable		
19	4-0	VBIENF2	VBI Active Video Enable, Field 2		
		Pedestal	Height Register		
1A	7	Reserved	Program Low		
1A	6-0	PEDHGT1	Composite Pedestal Height		
		Closed Ca	aption Registers		
1C	7-0	CCD1	First Byte of CC Data		
1D	7-0	CCD2	Second Byte of CC Data		
1E	7	CCON	Enable CC Data Packet		
1E	6	CCRTS	Request to Send Data		
1E	5	CCPAR	Auto Parity Generation		
1E	4	CCFLD	CC Field Select		
1E	3-0	CCLINE	CC Line Select		
	Timing Registers				
1F	7-0	PDCNT	Pixel Data Control Start		
20	7-0	SY	Horizontal Sync Tip Duration		
21	7-0	BR	Breezeway Duration		
22	7-0	BU	Burst Duration		
23	7-0	CBP	Color Back Porch Duration		

Reg	Bit	Mnemonic	Function
24	7-0	XBP	Extended Color Back Porch Duration
25	7-0	VA	Active Video Region Duration
26	7-0	VC	Active Video Region 2nd Half Line Duration
27	7-0	VB	Active Video Region 1st Half Line Duration
28	7-0	EL	Equalization Pulse Low Duration
29	7-0	EH	Equalization Pulse High Duration
2A	7-0	SL	Vertical Sync Pulse Low Duration
2B	7-0	SH	Vertical Sync Pulse High Duration
2C	7-0	FP	Front Proch Duration
2D	7-6	XBP	Extended Color Back Porch Duration
2D	5-4	VA	Active Video Duration
2D	3-2	VB	Active Video Region 1st Half Line Duration
2D	1-0	VC	Active Video Region 2nd Half Line Duration
2E	7-5	FIELD	Field Identification (read only)
2E	4-0	LTYPE	Line Type Identification (read only)
2F	7-0	CBL	Color Bar Duration
		Color Spac	e Matrix Registers
30	7-0	MCF1L	Matrix Coefficient #1
31	7-0	Reserved	Program Low
32	7-0	Reserved	Program Low
33	7-0	MCF2L	Matrix Coefficient #2
34	7-0	Reserved	Program Low
35	7-0	MCF3L	Matrix Coefficient #3
36	7-0	Reserved	Program Low
37	7-0	Reserved	Program Low

Table 22. Control Register Map (continued)

Reg	Bit	Mnemonic	Function
38	7-0	Reserved	Program Low
39	7-0	Reserved	Program Low
3A	7-4	MCF1M	Matrix Coefficient #1
3A	3-0	Reserved	Program Low
3B	7-3	Reserved	Set to 0.
3B	2-0	MCF4M	Matrix Coefficient #4
3C	7-3	Reserved	Set to 0.
3C	2-0	MCF6M	Matrix Coefficient #6
3D	7-4	Reserved	Program Low
3D	3-0	Reserved	Program Low
3E	7-4	Reserved	Program Low
3E	3-0	Reserved	Program Low
3F	7	SEL_CLK	DCVBS Clock Select
3F	6	Reserved	Program Low
3F	5	GAUSS_BVP	Gaussian Bypass Select
3F	4	SEL_PIX	DCVBS Output Selection
3F	3	C2DB_OFF	COMP2DB Offset Selection
3F	2-0	Reserved	Program Low

Reg	Bit	Mnemonic	Function						
	Subcarrier Registers								
40	7-0	FREQL	Subcarrier Frequency						
41	7-0	FREQ3	Subcarrier Frequency						
42	7-0	FREQ2	Subcarrier Frequency						
43	7-0	FREQM	Subcarrier Frequency						
44	7-0	SYSPHL	System Phase						
45	7-0	SYSPHM	System Phase						
46	7-0	BURPHL	Burst Phase						
47	7-0	BURPHM	Burst Phase						
48	7-0	BRSTFULL	Burst Height – Maximum Amplitude						
49	7-0	BRST1	Burst Height – 1st Intermediate Value						
4A	7-0	BRST2	Burst Height – 2nd Intermediate Value						

Note:

Control Register Definitions

Part Identification Register (0x00)

7	6	5	4	3	2	1	0
PARTID2							

Reg	Bit	Name	Description
00	7-0	PARTID2	(Read Only) 0x97

Part Identification Register (0x01)

7	6	5	4	3	2	1	0
PARTID1							

Reg	Bit	Name	Description
01	7-0	PARTID1	(Read Only) 0x21

For each register listed above, all bits not specified are reserved and should be set to logic LOW to ensure proper operation.

Control Register Definitions (continued)

Part Identification Register (0x02)

7	6	5	4	3	2	1	0
PARTID0							

Reg	Bit	Name	Description
02	7-0	PARTID0	(Read Only) 0x92

Revision Identification Register (0x03)

7	6	5	4	3	2	1	0
	REVID0						

Reg	Bit	Name	Description
03	7-0	REVID0	Reads back the revision number of the part.

Gamma Filters Register (0x04)

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	SRESET	SKEN	PD	RM

Reg	Bit	Name	Description
04	7-4	RESERVED	Set to Low
04	3	SRESET	Software RESET. When LOW, resets internal state machines and disables outputs. When HIGH, state machines are active and outputs are enabled.
04	2	SKEN	Data KEY Enable. When SKEN is LOW, Data keying is disabled. When SKEN is HIGH, Data keying is enabled.
04	1-0	PDRM	Pixel Data Ramping Mode. Pixel Data weighting for the rising edge of active video.
			NTSC: 0 0 1/8 1/2 7/8 1 1
			PAL: 0 1/8 3/8 5/8 7/8 1 1
			00 Pixels are weighted on the edge. 01 Sample and hold the 5th pixel for the slope weighting 1X Hard switch 0 0 0 1 1 1

Control Register Definitions (continued)

Input Format Register (0x05)

7	6	5	4	3	2	1	0
D10FF		INMODE		ON	ΛΙΧ		IRCE

Reg	Bit	Name	Description
05	7	D10FF	YCBCR Input Formatting. When D10FF is HIGH, 64 is subtracted from Y data path of the PD port. When D10FF is LOW, pixel data is passed through.
05	6	Reserved	Program Low
05	5-4	INMODE	Input Mode Select. 00 24 bit YCBCR (4:4:4) PD[7:0] = Y PD[23:16] = CB PD[15:8] = CR 01 10 bit D1 (YCBCR) PD[23:14] = YCBCR at 27MHz 10 20 bit YCBCR (4:4:4) PD[9:0] = Y PD[23:14] = CBCR (at 27MHz) 11 20 bit YCBCR (4:2:2) PD[9:0] = Y PD[23:14] = CBCR
05	3-2	OMIX	Overlay Mixer Select. ON No mix – PD data is always passed Hard mix – mixer performs a hard switch between PD and Overlay Set1 mix – the pixel data has the following weighting on the transition; 0, 1/2, 1 Set2 mix – the pixel data has the following weighting on the transition; 0, 1/8, 1/2, 7/8, 1
05	1-0	SOURCE	Video Input Select. Chooses from internal test patterns or pixel data port. 00 PD PORT 01 Modulated Ramp 10 INTERNAL COLOR BAR (75%) 11 INTERNAL COLOR BAR (100%)

Control Register Definitions (continued)

General Control Register (0x06)

7	6	5	4	3	2	1	0
FORMAT			MODE		PDCDIR	TOUT	TSOUT

Reg	Bit	Name	Description
06	7-6	FORMAT	Video Format. 00 NTSC 01 PAL – B,G,H,I,N 10 PAL – M 11 Reserved
06	5-3	MODE	Video Mode. 000 MASTER with free-running subcarrier 001 SLAVE with free-running subcarrier 010 CCIR656 with free-running subcarrier 011 GENLOCK with subcarrier phase and frequency locked to the GRS information. 100 MASTER with subcarrier phase reset every 8 fields 101 SLAVE with subcarrier phase reset every 8 fields 110 CCIR656 with subcarrier phase reset every 8 fields. 111 DRS-Lock with subcarrier phase and frequency locked to the DRS information.
06	2	PDCDIR	PDC Directional Control. When PDC is LOW, the PDC pin is an output. When PDCDIR is HIGH, the PDC pin is an input that can override the internally generated PDC and blank the active video of a line.
06	1	TOUT	External Sync Output Control. When TOUT = LOW, a MPEG style field toggle is the output on pin VSOUT. When TOUT = HIGH, a traditional vertical sync is the output on pin VSOUT.
06	0	TSOUT	External Sync Delay Control. When the TSOUT is LOW, HSOUT, VSOUT are delayed to match propagation delay through the chip. When TSOUT is HIGH, HSOUT, VSOUT are aligned with the incoming data on the PD port.

Control Register Definitions (continued)

Horizontal Ancillary Data Control Register (0x07)

7	6	5	4	3	2	1	0
LDFID	SKFLIP	DDSRST	RESE	RVED	ANCFREN	ANCPHEN	ANCTREN

Reg	Bit	Name	Description
07	7	LDFID	Field Lock Select. When LDFID is HIGH, the FLD[2:0] pins are used as inputs to lock the field the that the TMC2192 is encoding. 5 PXCK's after the falling edge of HSIN the FLD[2:0] pins are sampled. When LDFID is LOW, the FLD[2:0] pins output the current field that is being encoded.
07	6	SKFLIP	Soft Key Inversion. When SKFLP is LOW, the key generated by the data keying is a normal state. When SKFLP is HIGH, the key generated by the data keying is a inverted state.
07	5	DDSRST	DDS Reset. By inserting a logic HIGH into this register the DDS accumulator is reset to SYSPH value at the start of the next field 1 and DDSRST is reset LOW. This enables the DDS to be reset when the encoder is operating with a free running subcarrier.
07	4-3	RESERVED	
07	2	ANCFREN	Ancillary Frequency Enable. When HIGH, the encoder gets subcarrier frequency data (FREQ3-0) from incoming ancillary data (in accordance with FRV bit). When LOW, FREQ3-0 registers contain the subcarrier frequency data.
07	1	ANCPHEN	Ancillary Phase Enable. When HIGH, the encoder gets subcarrier phase offset data (SCHPHL and SCHPHM) from incoming ancillary data (in accordance with PHV bit). When LOW, a default value of 0000h is used for subcarrier phase.
07	0	ANCTREN	Ancillary Timing Enable. When HIGH, the encoder decodes incoming ancillary data to determine video timing (FIELD and SVF). When LOW, the ancillary timing reference data is ignored.

Ancillary Data ID Register (0x08)

7	6	5	4	3	2	1	0
			AN				

Reg	Bit	Name	Description
08	7-0	ANCID	Ancillary Data Identification. Bits 7-0 determine the ancillary data identification. Bit 0 is an odd parity bit. The value in this register must match that of the incoming ancillary data.

Control Register Definitions (continued)

Keying/Overlay Engine Register (0x09)

7	6	5	4	3	2	1	0
HKEN	BUKEN	SKEXT	DKDIS	EKDIS	FKDIS	LAYN	ИODE

Reg	Bit	Name	Descript	ion				
09	7	HKEN	When LC	Hardware KEY Enable. When LOW, the KEY pin is ignored. When HIGH, the KEY pin is enabled.				
09	6	BUKEN	When LC	Burst KEY Enable. When LOW, the output video burst is generated internally. When HIGH, the output video burst is taken from the CVBS port.				
09	5	SKEXT	When LC	Data KEY Operation Select. When LOW, data keying is allowed only during active video window. When HIGH, data keying is allowed during frame.				
09	4	DKDIS	When LC	Y Data KEY Disable. When LOW, Y input data is enabled for data keying. When HIGH, Y input data is ignored for data keying.				
09	3	EKDIS	When LC	KEY Disable. DW, CB input da GH, CB input da				
09	2	FKDIS	When LC	KEY Disable. DW, C _R input da GH, C _R input da				
09	1-0	LAYMODE	Layer As	ssignment Sele	ect.			
			Mode	BACKGND Source	MIDGND Source	Key	FOREGND Source	Key
			0	PD	OVERLAY	0L4-0	CVBS	KEY
			1 PD CVBS KEY OVERLAY OL4-0					OL4-0
			2	CVBS	OVERLAY	OL4-0	PD	KEY
			3	CVBS	PD	KEY	OVERLAY	OL4-0

Control Register Definitions (continued)

Key Value Register (0x0A)

7	6	5	4	3	2	1	0
	DKEYMAX						

Reg	Bit	Name	Description
0A	7-0	DKEYMAX	Y Maximum Data Key Value. DKEYMAX is compared against the 8 MSB's of Y channel. If DKEYMAX is greater or equal to Y and DKEYMIN less than Y then a match is signaled.

Key Value Register (0x0B)

7	6	5	4	3	2	1	0
			DKE'	YMIN			

Reg	Bit	Name	Description
0B	7-0	DKEYMIN	Y Minimum Data Key Value. DKEYMIN is compared against the 8 MSB's of Y channel. If DKEYMAX is greater or equal to Y and DKEYMIN less than Y then a match is signaled.

Key Value Register (0x0C)

7	6	5	4	3	2	1	0
	EKEYMAX						

Reg	Bit	Name	Description
0C	7-0	EKEYMAX	CB Maximum Data Key Value. EKEYMAX is compared against the 8 MSB's of CB channel. If EKEYMAX is greater or equal to CB and EKEYMIN less than CB then a match is signaled.

Key Value Register (0x0D)

7	6	5	4	3	2	1	0
	EKEYMIN						

Reg	Bit	Name	Description
0D	7-0	DKEYMIN	CB Minimum Data Key Value. EKEYMIN is compared against the 8 MSB's of CB channel. If EKEYMAX is greater or equal to CB and EKEYMIN less than CB then a match is signaled

Control Register Definitions (continued)

Key Value Register (0x0E)

7	6	5	4	3	2	1	0
	FKEYMAX						

Reg	Bit	Name	Description
0E	7-0	FKEYMAX	CR Maximum Data Key Value. FKEYMAX is compared against the 8 MSB's of CR channel. If FKEYMAX is greater or equal to C_R and FKEYMIN less than C_R then a match is signaled.

Key Value Register (0x0F)

7	6	5	4	3	2	1	0
	FKEYMIN						

Reg	Bit	Name	Description
0F	7-0	FKEYMIN	C _R Minimum Data Key Value. FKEYMIN is compared against the 8 MSB's of C _R channel. If FKEYMAX is greater or equal to C _R and FKEYMIN less than C _R then a match is signaled.

Control Register Definitions (continued)

DAC Control Register (0x10)

7	6	5	4	3	2	1	0
COMPDIS	CHROMADIS	LUMADIS	RESERVED	RESERVED	OLUTDIS	RESE	RVED

Reg	Bit	Name	Description
10	7	COMPDIS	Composite D/A Disable. When COMPDIS is LOW, the COMPOSITE D/A is enabled. When COMPDIS is HIGH, the COMPOSITE D/A is disabled.
10	6	CHROMADIS	Chroma D/A Disable. When CHROMADIS is LOW, the CHROMA D/A is enabled. When CHROMADIS is HIGH, the CHROMA D/A is disabled.
10	5	LUMADIS	LUMA D/A Disable. When LUMADIS is LOW, the LUMA D/A is enabled. When LUMADIS is HIGH, the LUMA D/A is disabled.
10	4-3	RESERVED	Set to 0.
10	2	OLUTDIS	Overlay LUT Disable. When OLUTDIS is LOW, the olut is enabled. When OLUTDIS is HIGH, the olut is disabled.
10	1-0	RESERVED	Program Low

Control Register Definitions (continued)

DAC Control Register (0x11)

7	6	5	4	3	2	1	0
DRSSEL	RESERVED	COMP2DB	SINEN	REFSEL	LUMDIS	CHRMDIS	BURSTDIS

Reg	Bit	Name	Description
11	7	DRSSEL	DRS Selection. When DRSSEL is HIGH, PD[7:0] is routed to the DRS detection block. When DRSSEL is LOW, CVBS[9:2] is routed to the DRS detection block.
11	6	RESERVED	Program Low
11	5	COMP2DB.	Composite 2 Overflow Control. When COMP2DB is HIGH, the digital range of the composite sumer is 0 to 2047 with half the digital resolution. When COMP2DB is LOW, the digital output of the composite summer is 0 to 1023, all values exceeding 1023 or below 0 are clipped.
11	4	SINEN	X/Sine(X) Filter Enable. When SINEN is LOW, the X/Sin(X) filter is bypassed. When SINEN is HIGH, the X/Sin(X) filter is used to compensate for the DAC roll-off at high frequencies.
11	3	RESERVED	Program Low
11	2	LUMDIS	Luma Disable. When LUMDIS is LOW, the luminance data on the composite data path is enabled. When LUMDIS is HIGH, the luminance data on the composite data path is disabled.
11	1	CHRMDIS	Chroma Disable. When CHRMDIS is LOW, the chrominance data on the composite data path is enabled. When CHRMDIS is HIGH, the chrominance data on the composite data path is disabled.
11	0	BURSTDIS	Burst Disable. When BURSTDIS is LOW, the burst is enabled. When BURSTDIS is HIGH, the burst is disabled.

Control Register Definitions (continued)

VBI Ped Enable Register (0x14)

7	6	5	4	3	2	1	0
			VBIPE	EDEM			

Reg	Bit	Name	Description
14	7-0	VBIPEDEM	VBI Pedestal Enable, Even Fields. VBIPEDEM is the bits 15-8 of VBIPEDE[15:0]. VBIPEDE controls the addition of pedestal on a line by line basis from line 10 in NTSC (VBIPEDE[0] = HIGH) to line 24 (VBIPEDE[14] = HIGH) in the EVEN field of NTSC. VBIPEDE[15] controls the pedestal from line 25 to line 263 inclusive.

VBI Ped Enable Register (0x15)

7	6	5	4	3	2	1	0
			VBIP	EDEL			

Reg	Bit	Name	Description
15	7-0	VBIPEDEL	VBI Pedestal Enable, Even Fields. VBIPEDEL is the bits 7-0 of VBIPEDE[15:0]. VBIPEDE controls the addition of pedestal on a line by line basis from line 10 in NTSC (VBIPEDE[0] = HIGH) to line 24 (VBIPEDE[14] = HIGH) in the EVEN field of NTSC. VBIPEDE[15] controls the pedestal from line 25 to line 263 inclusive.

VBI Ped Enable Register (0x16)

7	6	5	4	3	2	1	0
			VRIP	EDOM			

Reg	Bit	Name	Description
16	7-0	VBIPEDOM	VBI Pedestal Enable, Odd Fields. VBIPEDOM is the bits 14-7 of VBIPEDO[14:0]. VBIPEDO controls the addition of pedestal on a line by line basis from line 273 (VBIPEDE[0] = HIGH) to line 286 (VBIPEDE[13] = HIGH) in the ODD field of NTSC. VBIPEDO[14] controls the pedestal from line 287 to line 525 inclusive.

Control Register Definitions (continued)

VBI Ped Enable Register (0x17)

7	6	5	4	3	2	1	0
	_		VBIPEDOL				HVA

Reg	Bit	Name	Description
17	7-1	VBIPEDOM	VBI Pedestal Enable, Odd Fields. VBIPEDOL is the bits 6-0 of VBIPEDO[14:0]. VBIPEDO controls the addition of pedestal on a line by line basis from line 273 (VBIPEDE[0] = HIGH) to line 286 (VBIPEDE[13] = HIGH) in the ODD field of NTSC. VBIPEDO[14] controls the pedestal from line 287 to line 525 inclusive.
17	0	HVA	Horizontal and Vertical Sync Alignment. When HVA is LOW, the falling edge of HSIN and VSIN must occur just prior to the rising edge of PXCK to start an field 1. When HVA is HIGH, VSIN is allowed to vary from HSIN by ±32 pixels.

Vertical Blanking Interval Enable Register (0x18)

7	6	5	4	3	2	1	0
Reserved	GLKCTL1	GLKCTL0	VBIENF1				

Reg	Bit	Name	Description
18	7	Reserved	
18	6	GLKCTL1	Genlock Control Register 1. When GLKCTL1 is LOW, the PALODD bit of the GRS stream is ignored. When GLKCTL1 is HIGH, the PALODD bit of the GRS stream controls the PALODD flip of the subcarrier.
18	5	GLKCTL0	Genlock Control Register 0. When GLKCTL0 is LOW, the Color Frame bit of the GRS stream is ignored. When GLKCTL0 is HIGH, the Color Frame bit of the GRS stream controls the field sequence in the FVHGEN.
18	4-0	VBIENF	VBI Active Video Enable, Field 1. The value of VBIENF1 determines which line blanking stops and active line for EVEN fields in NTSC starting from line 4 to line 35 or an ODD fields for PAL starting from line 1 to line 32.

Control Register Definitions (continued)

Vertical Blanking Interval Enable Register (0x19)

7	6	5	4	3	2	1	0
SHORT	T512	HALFEN			VBIENF2		

Reg	Bit	Name	Description
19	7	SHORT	Test Register. Program LOW.
19	6	T512	EH/SL Offset Control Bit. When LOW, the true value of EH and SL is offset by 256. When HIGH, the true value of EH and SL is offset by 512.
19	5	HALFEN	Half Line Enable. When LOW, half-line blanking occurs on line 283 (NTSC) or line 23 (PAL). When HIGH, line 283 (NTSC) or line 23 (PAL) is treated as a full line of active video.
19	4-0	VBIENF2	VBI Active Video Enable, Field 2. The value of VBIENF2 determines which line blanking stops and active line for ODD fields in NTSC starting from line 4 to line 35 or an EVEN fields for PAL starting from line 1 to line 32.

Pedestal Height Register (0x1A)

7	6	5	4	3	2	1	0
Reserved				PEDHGT1			

Reg	Bit	Name	Description
1A	7	Reserved	
1A	6-0	PEDHGT1	Composite Pedestal Height. PEDHGT1 is a 2's comp value producing a pedestal height from -22.1 IRE to 21.7 IRE with .345 IRE steps on the composite data path. The default 7.5 IRE pedestal for NTSC-M results from a hex code of 0010110b.

Closed Caption Register (0x1C)

7	6	5	4	3	2	1	0
			CC	D1			

Reg	Bit	Name	Description
1C	7-0	CCD1	First Byte of CC Data. Bit 0 is the LSB. The MSB will be overwritten by an ODD Parity Bit if CCPAR is HIGH.

Control Register Definitions (continued)

Closed Caption Register (0x1D)

7	6	5	4	3	2	1	0
			CC	D2			

Reg	Bit	Name	Description
1D	7-0	CCD2	Second Byte of CC Data. Bit 0 is the LSB. The MSB will be overwritten by an ODD Parity Bit if CCPAR is HIGH

Closed Caption Register (0x1E)

7	6	5	4	3	2	1	0
CCON	CCRTS	CCPAR	CCFLD		CCL	INE	

Reg	Bit	Name	Description
1E	7	CCON	Enable CC Data Packet. Command the CC data generator to send either CC data or a NULL byte whenever the specified line is transmitted.
1E	6	CCRTS	Request To Send Data. This bit is set HIGH by the user when bytes 0x1C and 0x1D have been loaded with the next two bytes to be sent. When the encoder's line count reaches preceding the line specified in bits 4-0 of this register the data will be transferred from registers 0x1C and 0x1D, and RTS will be RESET LOW. A new pair of bytes may then be loaded into registers 0x1C and 0x1D. If CCON = 1 and CCRTS = 0 when the CC line is to be sent, NULL bytes will be sent.
1E	5	CCPAR	Auto Parity Generation. When set HIGH, the encoder replaces the MSB of bytes 0x1C and 0x1D with a calculated ODD parity. When set LOW, the CC processor transmits the 16 bits exactly as loaded into registers 0x1C and 0x1D.
1E	4	CCFLD	CC Field Select. When LOW, CC data is transmitted on the selected line of ODD fields. When HIGH, it is sent on EVEN fields.
1E	3-0	CCLINE	CC Line Select. Defines (with an offset) the line on which CC data are transmitted.

Timing Register (0x1F)

7	6	5	4	3	2	1	0
			PDO	CNT			

Reg	Bit	Name	Description
1F	7-0	PDCNT	Pixel Data Control Start. PDCNT determines the number of pixels (PCK's) from the midpoint of the falling edge of horizontal sync to the rising edge of PDC on active video lines.

Control Register Definitions (continued)

Timing Register (0x20)

7	6	5	4	3	2	1	0
			S	Υ			

Reg	Bit	Name	Description
20	7-0	SY	Horizontal Sync Tip Duration.
			This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Timing Register (0x21)

7	6	5	4	3	2	1	0
			В	R			

Reg	Bit	Name	Description
21	7-0	BR	Breezeway Duration. This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Timing Register (0x22)

7	6	5	4	3	2	1	0
			В	U			

Reg	Bit	Name	Description
22	7-0	BU	Burst Duration. This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Timing Register (0x23)

7	6	5	4	3	2	1	0
			CE	3P			

Re	g Bit	Name	Description	
23	7-0	CBP	Color Back Porch Duration.	
			This 8 bit register holds a value extending from 0 to 255 PCK cycles.	

Timing Register (0x24)

7	6	5	4	3	2	1	0
			XE	3P			

Reg	Bit	Name	Description
24	7-0	CBP	Extended Color Back Porch Duration. This 8 bit register holds the LSB's of a 10 bit value extending from 0 to 1023 PCK cycles.

Control Register Definitions (continued)

Timing Register (0x25)

7	6	5	4	3	2	1	0
			V	'A			

Reg	Bit	Name	Description
25	7-0	VA	Active Video Region Duration. This 8 bit register holds the LSB's of a 10 bit value extending from 0 to 1023 PCK cycles.

Timing Register (0x26)

7	6	5	4	3	2	1	0
			V	C			

Reg	Bit	Name	Description
26	7-0	VC	Active Video Region 2 nd Half Line Duration. This 8 bit register holds the LSB's of a 10 bit value extending from 0 to 1023 PCK cycles.

Timing Register (0x27)

7	6	5	4	3	2	1	0
			V	В			

Reg	Bit	Name	Description
27	7-0	VB	Active Video Region 1 st Half Line Duration. This 8 bit register holds the LSB's of a 10 bit value extending from 0 to 1023 PCK cycles.

Timing Register (0x28)

7	6	5	4	3	2	1	0
			V	В			

Reg	Bit	Name	Description
28	7-0	EL	Equalization Pulse Low Duration.
			This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Control Register Definitions (continued)

Timing Register (0x29)

7	6	5	4	3	2	1	0
			E	Н			

Reg	Bit	Name	Description
29	7-0	EH	Equalization Pulse High Duration.
			This 8 bit register holds 8 LSB's of EH, The addition of 256 or 512 is controlled by T512. The range is either 256 to 511 PCK cycles or 512 to 767 PCK cycles.

Timing Register (0x2A)

7	6	5	4	3	2	1	0
	SL						

Reg	Bit	Name	Description
2A	7-0	SL	Vertical Sync Pulse Low Duration. This 8 bit register holds 8 LSB's of SL, The addition of 256 or 512 is controlled by T512. The range is either 256 to 511 PCK cycles or 512 to 767 PCK cycles.

Timing Register (0x2B)

7	6	5	4	3	2	1	0
			S	Н			

Reg B	Bit	Name	Description
2B 7	7-0	SH	Vertical Sync Pulse High Duration. This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Timing Register (0x2C)

7	6	5	4	3	2	1	0
			F	P			

Reg	Bit	Name	Description
2C	7-0	FP	Front Porch Duration. This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Control Register Definitions (continued)

Timing Register (0x2D)

7	6	5	4	3	2	1	0
XI	3P	V	A	V	В	V	C C

Reg	Bit	Name	Description
2D	7-6	XBP	Extended Color Back Porch Duration. 2 MSB's of the 10 bit XBP, extending from 0 to 1023 PCK cycles.
2D	5-4	VA	Active Video Duration. 2 MSB's of the 10 bit VA, extending from 0 to 1023 PCK cycles.
2D	3-2	VB	Active Video Region 1 st Half Line Duration. 2 MSB's of a 10 bit VB, extending from 0 to 1023 PCK cycles.
2D	1-0	VC	Active Video Region 2 nd Half Line Duration. 2 MSB's of a 10 bit VC, extending from 0 to 1023 PCK cycles.

Timing Register (0x2E)

7	6	5	4	3	2	1	0
	FIELD				LTYPE		

Reg	Bit	Name	Description
2E	7-5	FIELD	Field Identification. (READ ONLY) These three bits are updated 12 PXCK periods after each vertical sync. They allow the user to determine field type on a continuous basis
2E	4-0	LTYPE	LineType Identification (READ ONLY) These three bits are updated 5 PXCK periods after each horizontal sync. They allow the user to determine line type on a continuous basis.

Timing Register (0x2F)

7	6	5	4	3	2	1	0
			CI	BL			

Reg	Bit	Name	Description
2F	7-0	CBL	Color Bar Duration. This 8 bit register holds a value extending from 0 to 255 PCK cycles.

Color Space Matrix Register (0x30)

7	6	5	4	3	2	1	0
			MC	F1L	•		

Reg	Bit	Name	Description
30	7-0	MCF1L	Matrix Coefficient #1. Bits 7-0 of MCF1.

Control Register Definitions (continued)

Color Space Matrix Register (0x31)

7	6	5	4	3	2	1	0
			RESE	RVED			

Reg	Bit	Name	Description
31	7-0	RESERVED	Program Low

Color Space Matrix Register (0x32)

7	6	5	4	3	2	1	0
			RESE	RVED			

Reg	Bit	Name	Description
32	7-0	RESERVED	Program Low

Color Space Matrix Register (0x33)

7	6	5	4	3	2	1	0
			MC	F2L			

Reg	Bit	Name	Description
33	7-0	MCF2L	Matrix Coefficient #2. Bits 7-0 of MCF4.

Color Space Matrix Register (0x34)

7	6	5	4	3	2	1	0
			RESE	RVED			

Reg	Bit	Name	Description
34	7-0	RESERVED	Program Low

Color Space Matrix Register (0x35)

7	6	5	4	3	2	1	0
			MC	F3L			

Reg	Bit	Name	Description
35	7-0	MCF3L	Matrix Coefficient #3. Bits 7-0 of MCF6.

Control Register Definitions (continued)

Color Space Matrix Register (0x36)

7	6	5	4	3	2	1	0
			RESE	RVED			

Re	g Bit	Name	Description
36	7-0	RESERVED	Program Low

Color Space Matrix Register (0x37)

7	6	5	4	3	2	1	0
			RESE	RVED			

Reg	Bit	Name	Description
37	7-0	RESERVED	Program Low

Color Space Matrix Register (0x38)

7	6	5	4	3	2	1	0
			RESE	RVED			

Reg	Bit	Name	Description
38	7-0	RESERVED	Program Low

Color Space Matrix Register (0x39)

7	6	5	4	3	2	1	0
			RESE	RVED			

Reg	Bit	Name	Description
39	7-0	RESERVED	Program Low

Color Space Matrix Register (0x3A)

7	6	5	4	3	2	1	0
	MCI	F1M			MCI	F2M	

Reg	Bit	Name	Description
ЗА	7-4	MCF1M	Matrix Coefficient #1. Bits 11-8 of MCF1.
3A	3-0	RESERVED	Program Low

Control Register Definitions (continued)

Color Space Matrix Register (0x3B)

7	6	5	4	3	2	1	0
	MCI	F3M		RESERVED		MCF4M	

Reg	Bit	Name	Description
3B	7-3	RESERVED	Set to 0.
3B	2-0	MCF4M	Matrix Coefficient #4. Bits 10-8 of MCF4.

Color Space Matrix Register (0x3C)

7	6	5	4	3	2	1	0
	MCI	F5M		RESERVED		MCF6M	

Reg	Bit	Name	Description
3C	7-3	RESERVED	Set to 0.
3C	2-0	MCF6M	Matrix Coefficient #6. Bits 10-8 of MCF6.

Color Space Matrix Register (0x3D)

7	6	5	4	3	2	1	0
	RESE	RVED			RESE	RVED	

Reg	Bit	Name	Description
3D	7-4	RESERVED	Program Low
3D	3-0	RESERVED	Program Low

Color Space Matrix Register (0x3E)

7	6	5	4	3	2	1	0
	RESE	RVED			RESE	RVED	

Reg	Bit	Name	Description
3E	7-4	RESERVED	Program Low
3E	3-0	RESERVED	Program Low

Control Register Definitions (continued)

Color Space Matrix Register (0x3F)

7	6	5	4	3	2	1	0
SEL_CLK	RESERVED	GAUSS_BYP	SEL_PIX	C2DB_OFF	NMEH	CSM	IFMT

Reg	Bit	Name	Description
3F	7	SEL_PIX	DCVBS Output Selection. When SEL_PIX is HIGH, the interpolated pixel data is selected as the output for the DCVBS port. When SEL_PIX is LOW, the non-interpolated pixel data is selected as the output for the DCVBS port.
3F	6	RESERVED	Program Low
3F	5	GAUSS_BYP	Gaussian Bypass Select. When GAUSS_BYP is LOW, the gaussian filter is enabled. When GAUSS_BYP is HIGH, the gaussian filter is bypassed.
3F	4	SEL_CLK	DCVBS Clock Select. When SEL_CLK is LOW, the DCVBS output is clocked at the PXCK. When SEL_CLK is HIGH, the DCVBS output is clocked at the PCK.
3F	3	C2DB_OFF	COMP2DB Offset Selection. When C2DB_OFF is HIGH an offset of 256 is added to the COMP2 output allowing the chrominance data that extends below the sync level to be passed through the outputs.
3F	2-0	RESERVED	Program Low

Subcarrier Register (0x40)

7	6	5	4	3	2	1	0
			FRI	EQL			

Reg	Bit	Name	Description
40	7-0	FREQL	Subcarrier Frequency. Bits 7-0 of the subcarrier frequency FREQL[31:0].

Control Register Definitions (continued)

Subcarrier Register (0x41)

7	6	5	4	3	2	1	0
			FRE	EQ3			

Reg	Bit	Name	Description
41	7-0	FREQ3	Subcarrier Frequency.
			Bits 15-8 of the subcarrier frequency FREQL[31:0].

Subcarrier Register (0x42)

7	6	5	4	3	2	1	0
			FRI	EQ2			

Reg	Bit	Name	Description
42	7-0	FREQ2	Subcarrier Frequency. Bits 23-16 of the subcarrier frequency FREQL[31:0].

Subcarrier Register (0x43)

7	6	5	4	3	2	1	0
			FRE	QM			

Reg	Bit	Name	Description
43	7-0	FREQM	Subcarrier Frequency. Bits 31-24 of the subcarrier frequency FREQL[31:0].

Subcarrier Register (0x44)

7	6	5	4	3	2	1	0
			SYS	PHL			

Reg	Bit	Name	Description
44	7-0	SYSPHL	System Phase. Bits 7-0 of the video phase offset SYSPH[15:0].

Subcarrier Register (0x45)

7	6	5	4	3	2	1	0
			SYS	PHM			

Reg	Bit	Name	Description
45	7-0	SYSPHM	System Phase. Bits 15-8 of the video phase offset SYSPH[15:0].

Control Register Definitions (continued)

Subcarrier Register (0x46)

7	6	5	4	3	2	1	0
			BUR	RPHL			

Reg	Bit	Name	Description
46	7-0	BURPHL	Burst Phase.
			Bits 7-0 of the burst phase offset BURPH[15:0].

Subcarrier Register (0x47)

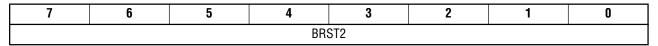
7	6	5	4	3	2	1	0
			חום	PHM			

Reg	Bit	Name	Description
47	7-0	BURPHM	Burst Phase. Bits 15-8 of the burst phase offset BURPH[15:0].

Burst Height Register (0x48)

7	6	5	4	3	2	1	0
	BRSTFULL						

Reg	Bit	Name	Description
48	7-0	BRSTFULL	Burst Height – Maximum Amplitude. The 8 bit value assigned to U burst component in NTSC and to the U and V components in PAL for the maximum burst amplitude. The burst envelopes midpoint is derived from BRSTFULL. The value programmed into BRSTFULL needs to be .707 of the magnitude of the burst vector.


Burst Height Register (0x49)

7	6	5	4	3	2	1	0
	BRST1						

Reg	Bit	Name	Description
49	7-0	BRST1	Burst Height – 1st Intermediate Value. The 8 bit value assigned to U burst component in NTSC and to the U and V components in PAL for the first intermediate value of the burst envelope. The value programmed into BRST1 needs to be .707 of the magnitude of the burst vector.

Control Register Definitions (continued)

Subcarrier Register (0x4A)

Reg	Bit	Name	Description
4A	7-0	BRST2	Burst Height – 2nd Intermediate Value. The 8 bit value assigned to U burst component in NTSC and to the U and V components in PAL for the second intermediate value of the burst envelope. The value programmed into BRST2 needs to be .707 of the magnitude of the burst vector.

Absolute Maximum Ratings (beyond which the device may be damaged)

Parameter	Min.	Max.	Unit
Power Supply Voltage	-0.5	7.0	V
Digital Inputs			
Applied Voltage ²	-0.5	V _{DD} + 0.5	V
Forced Current ^{3,4}	-20.0	20.0	mA
Digital Outputs			
Applied Voltage ²	-0.5	V _{DD} + 0.5	V
Forced Current ^{3,4}	-20.0	20.0	mA
Short Circuit Duration (Single Output in HIGH state to GND)		1	second
Analog Output Short Circuit Duration (Single output to GND)		Infinite	
Temperature			
Operating, Ambient	-20	+110	°C
Operating, Junction, Plastic package		+150	°C
Lead, Soldering (10 seconds)		+300	°C
Vapor Phase Soldering (1 minute)		+220	°C
Storage	-65	+150	°C

Notes:

- 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
- 2. Applied voltage must be current limited to specified range, and measured with respect to GND.
- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as conventional current, flowing into the device.

Operating Conditions

Paramete	r	Min.	Nom.	Max.	Units	
V _{DD}	Power Supply Voltage		4.75	5.0	5.25	V
VIH	Input Voltage, Logic HIGH	TTL Compatible Inputs	2.0		VDD	V
		CMOS Compatible Inputs	0.7V _{DD}		V _{DD}	V
VIL	Input Voltage, Logic LOW	TTL Compatible Inputs	GND		0.8	V
		CMOS Compatible Inputs	GND		0.3V _{DD}	V
Іон	Output Current, Logic HIGH	Output Current, Logic HIGH			-2.0	mA
loL	Output Current, Logic LOW			4.0	mA	
VREF	External Reference Voltage			1.235		V
IREF	D/A Converter Reference Current (IREF = VREF / RREF, flowing out of the RREF pin)			1.020		mA
RREF	Reference Resistor, VREF = N	lom.		1210		Ω
Rout	Total Output Load Resistance			37.5		Ω
TA	Ambient Temperature, Still Air	1	0		70	°C
Pixel Inte	rface		·		•	
fPXL	Pixel Rate				15	Mpps
fPXCK	Master Clock Rate, 2x pixel ra	20		30	MHz	
tpwhpx	PXCK Pulse Width, HIGH	15			ns	
tPWLPX	PXCK Pulse Width, LOW		17.5			ns

Operating Conditions (continued)

Parameter	•	Min.	Nom.	Max.	Units			
tsp	Setup Time	16			ns			
tHP	Hold Time	0			ns			
Parallel M	Parallel Microprocessor Interface							
tPWLCS	CS Pulse Width, LOW	4			PXCK			
tpwhcs	CS Pulse Width, HIGH	6			PXCK			
tsa	Address Setup Time	17			ns			
tHA	Address Hold Time	0			ns			
tsD	Data Setup Time (write)	16			ns			
tHD	Data Hold Time (write)	0			ns			
tsr	RESET Setup Time	12			ns			
tHR	RESET Hold Time	2			ns			
Serial Inte	rface	•	•		,			
tDAL	SCL Pulse Width, LOW		1.3		μs			
tDAH	SCL Pulse Width, HIGH		0.6		μs			
tSTAH	SDA Start Hold Time		0.6		μs			
tstasu	SCL to SDA Setup Time (Stop)		0.6		μs			
tstosu	SCL to SDA Setup Time (Start)		0.6		μs			
tBUFF	SDA Stop Hold Time Setup		1.3		μs			
tDSU	SDA to SCL Data Setup Time		300		ns			
tDHO	SDA to SCL Data Hold Time		300		ns			

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
IDD	Power Supply Current	V _{DD} = Max., f _{PXCK} = 27MHz		335	375	mA
IDDQ	Power Supply Current (D/A disabled)	V _{DD} = Max., f _{PXCK} = 27MHz		15	25	mA
VRO	Voltage Reference Output			1.235		V
IBR	Input Bias Current, VREF	VREF = Nom.		50		μΑ
lін	Input Current, Logic HIGH	V _{DD} = Max., V _{IN} = V _{DD}			10	μΑ
IIL	Input Current, Logic LOW	V _{DD} = Max., V _{IN} = GND			-10	μΑ
Voн	Output Voltage, Logic HIGH	IOH = Max.	2.4			V
VoL	Output Voltage, Logic LOW	IOL = Max.			0.4	V
lozh	Hi-Z Leakage current, HIGH	V _{DD} = Max., V _{IN} = V _{DD}			10	μΑ
lozL	Hi-Z Leakage current, LOW	V _{DD} = Max., V _{IN} = GND			-10	μΑ
Cı	Digital Input Capacitance	TA = 25°C, f = 1MHz		4	10	pF
Co	Digital Output Capacitance	T _A = 25°C, f = 1MHz		10		pF
Voc	Video Output Compliance Voltage		-0.3		2.0	V
Rout	Video Output Resistance			15		kΩ
Cout	Video Output Capacitance	IOUT = 0 mA, f = 1 MHz		15	25	pF

Notes:

- 1. Typical IDD with VDD = +5.0 Volts and $TA = 25^{\circ}C$.
- 2. Timing reference points are at the 50% level.

Switching Characteristics

Parameter		Conditions	Min.	Тур.	Max.	Units
PIPES	Pipeline Delay	PD to Analog Out PD to DCVBS			64 66	PXCK Periods
tDOZ	Output Delay, CS to low-Z		4		15	ns
tDOM	Output Delay, CS to Data Valid				15	ns
tном	Output Hold Time, CS to hi-Z		10			ns
tDO	Output Delay	PXCK to HSOUT, VSOUT, PDC, LINE, FLD			15	ns
tR	D/A Output Current Risetime	10% to 90% of full-scale		2		ns
tF	D/A Output Current Falltime	90% to 10% of full-scale		2		ns
tDOV	Analog Output Delay			10		ns

Notes:

- 1. Timing reference points are at the 50% level.
- 2. Analog CLOAD <10 pF, D7-0 load <40 pF.
- 3. Pipeline delay, with respect to PXCK, is a function of the phase relationship between the internally generated PCK (PXCK/2) and PXCK, as established by the hardware RESET.

System Performance Characteristics

Parameter		Conditions		Тур.	Max.	Units
RES	D/A Converter Resolution		10	10	10	Bits
ELI	Integral Linearity Error				0.25	%
ELD	Differential Linearity Error (monotonic)				0.10	%
EG	Gain Error				±7.5	%FS
dp	Differential Phase	PXCK = 27.00 MHz,40 IRE Ramp		0.5		degree
dg	Differential Gain	PXCK = 27.00 MHz,40 IRE Ramp		0.9		%
SKEW	CHROMA to LUMA Output Skew			0	1	ns
PSRR	Power Supply Rejection Ratio	f=1kHz		0.5		%/%V _{DD}

Notes:

- 1. TTL input levels are 0.0 and 3.0 Volts, 10%-90% rise and fall times <3 ns.
- 2. Analog CLOAD <10 pF, D7-0 load <40 pF.

Applications Discussion

The suggested output reconstruction filter is shown in Figure 29. The phase and frequency response for the encoder and the reconstruction filter is shown in Figure 30.

Figure 28. Typical Analog Reconstruction Filter

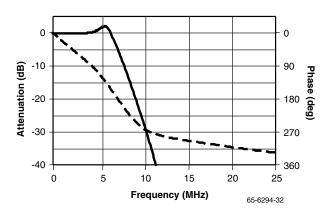


Figure 29. Overall Response

The circuit in Figure 31 shows the connection of power supply voltages, output reconstruction filters and the external voltage reference. All V_{DD} pins should be connected to the same power source.

The full-scale output voltage level for each D/A:

$$V_{OUT_X} = I_{OUT_X} \times R_{L_X} = K \times I_{REF_X} \times R_{L_X}$$

= $K \times (V_{REF}/R_{REF_X}) \times R_{L_X}$

where:

- I_{OUTx} is the full-scale output current sourced by the D/A converter.
- RLx is the resistive load on the D/A output pin.
- K is a constant for the TMC2192 D/A converters (approximately equal to 34).
- IREFx is the reference current flowing out of the RREFx pin to ground.
- VREF is the voltage measured on the VREF pin.
- R_{REFx} is the total resistance connected between the R_{REFx} pin and ground.

The reference voltage in Figure 31 is from an LM185 1.2 Volt band-gap reference. The suggested trim is designed to give $\pm 10\%$ of trim around 5K Ohms. This R_{REFx} sets the "gain" for that D/A converter. Varying R_{REFx} $\pm 10\%$ will cause the full-scale output voltage on the D/A to vary by $\pm 10\%$.

An alternative output reconstruction filter is the Microelectronic Modules Corp. ST-163E, which contains 4 independent reconstruction filter. The phase and frequency response of this filter is shown in the Output Low-Pass Filters Section of this data sheet.

Layout Considerations

Designing with high-performance mixed-signal circuits demands printed circuits with ground planes. Wire-wrap is not an option. Overall system performance is strongly influenced by the board layout. Capacitive coupling from digital to analog circuits may result in poor picture quality. Consider the following suggestions when doing the layout:

- Keep analog traces (CBYPx, VREF, RREF, DACx) as short and far from all digital signals as possible. The TMC2192 should be located near the board edge, close to the analog output connectors.
- The power plane for the TMC2192 should be separate from that which supplies other digital circuitry. A single power plane should be used for all of the V_{DD} pins. If the power supply for the TMC2192 is the same for the system's digital circuitry, power to the TMC2192 should be filtered with ferrite beads and 0.1μF capacitors to reduce noise.
- The ground plane should be solid, not cross-hatched.
 Connections to the ground plane should be very short.

- Decoupling capacitors should be applied liberally to pins. For best results, use 0.1µF capacitors. Lead lengths should be minimized. Ceramic chip capacitors are the best choice.
- If there is dedicated digital power plane, it should not overlap the TMC2192 footprint, the voltage reference, or the analog outputs. Capacitive coupling of digital power supply noise from this layer to the TMC2192 and its related analog circuitry can have an adverse effect on performance.
- The PXCK should be handled carefully. Jitter and noise on this clock or its ground reference will translate to noise on the video outputs. Terminate the clock line carefully to eliminate overshoot and ringing.
- Connect all unused inputs to the TMC2192 to either ground or Vpp. Do not leave them unconnected.

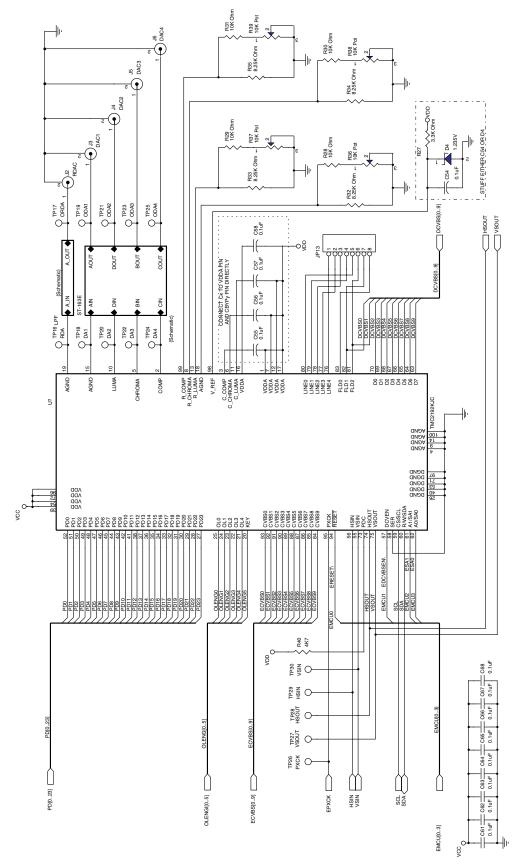


Figure 30. Typical Layout

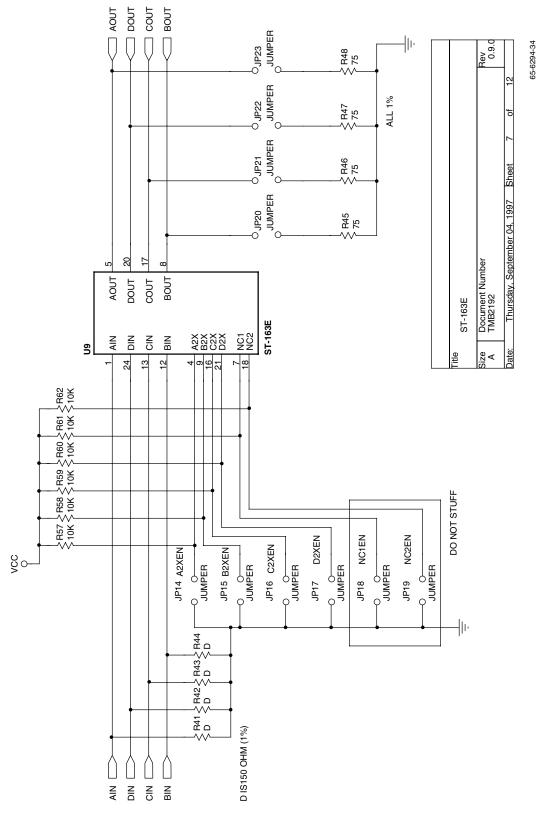


Figure 31. ST-163E Layout

Output Low-Pass Filters

The response at 5.0MHz typically varies $<\pm0.25$ dB with supplies of ±5 V to ±8 V. When operating in the 0dB gain

mode, pin 6 must be well isolated from ground planes. When operating in the +6dB gain mode, pin 6 must have a low resistance path to ground.

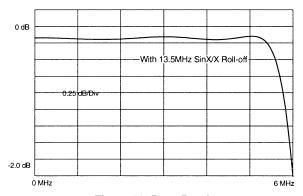


Figure 32. Pass Band

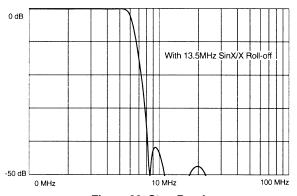


Figure 33. Stop Band

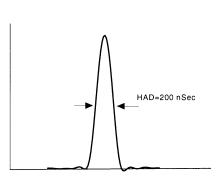


Figure 34. 2T Pulse

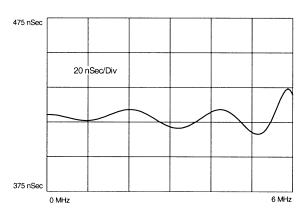
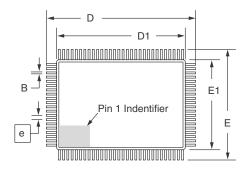
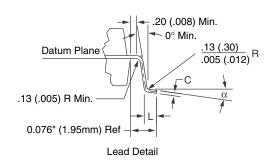
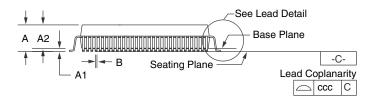


Figure 35. Group Delay


Mechanical Dimensions


100-Lead MQFP


Symbol	Inches		Millin	Notes		
Syllibol	Min.	Max.	Min.	Max.	Notes	
Α	_	.134	_	3.40		
A1	.010	_	.25	_		
A2	.100	.120	2.55	3.05		
В	.008	.015	.22	.38	3, 5	
С	.005	.009	.13	.23	5	
D	.904	.923	22.95	23.45		
D1	.783	.791	19.90	20.10		
E	.667	.687	16.95	17.45		
E1	.547	.555	13.90	14.10		
е	.0256	BSC	.65	BSC		
L	.028	.040	.73	1.03	4	
N	10	00	100			
ND	30		3	30		
NE	2	.0	20			
α	0°	7°	0°	7°		
CCC	_	.004	_	.12		

Notes:

- 1. All dimensions and tolerances conform to ANSI Y14.5M-1982.
- 2. Controlling dimension is millimeters.
- 3. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be .08mm (.003in.) maximum in excess of the "B" dimension. Dambar cannot be located on the lower radius or the foot.
- 4. "L" is the length of terminal for soldering to a substrate.
- 5. "B" & "C" includes lead finish thickness.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2192KHC	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	100-pin MQFP	TMC2192KHC

For additional information regarding our products, please visit CADEKA at: cadeka.com

CADEKA Headquarters Loveland, Colorado

T: 970.663.5452

T: 877.663.5452 (toll free)

CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.

CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.

Copyright ©2007-2008 by CADEKA Microcircuits LLC. All rights reserved.

