
Key Features and Performance 0.15um pHEMT Technology 21-27 GHz Frequency Range 2 dB Nominal Noise Figure

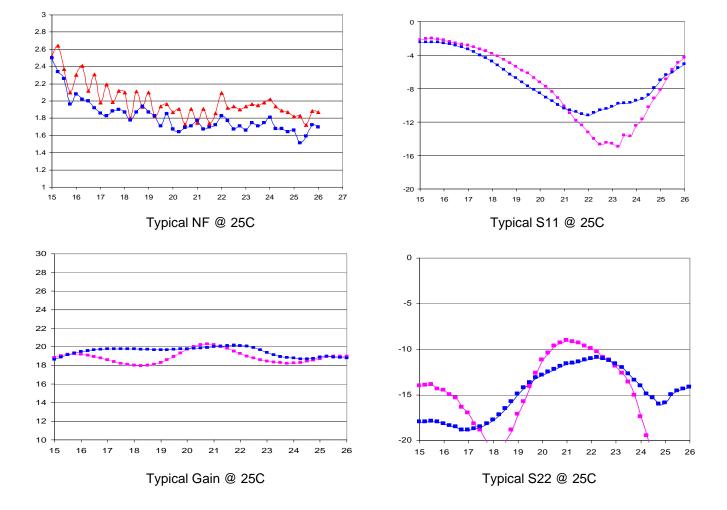
November 5, 2001

1

Ka Band Low Noise Amplifier

TGA1319A-EPU

Chip Dimensions 1.984 mm x .923 mm


3V, 45 mA with -0.5V < Vg < +0.5V• **Primary Applications**

Point-to-Point Radio

12 dBm Pout

19 dB Nominal Gain

Point-to-Multipoint Communications

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

Preliminary Data, 2 Fixtured samples @ 25C

Advance Product Information

November 5, 2001

TGA1319A-EPU

MAXIMUM RATINGS

SYMBOL	PARAMETER <u>4</u> /	VALUE	NOTES
\mathbf{V}^+	POSITIVE SUPPLY VOLTAGE	5 V	
\mathbf{I}^+	POSITIVE SUPPLY CURRENT	60 mA	<u>1</u> /
I	NEGATIVE GATE CURRENT	5.28 mA	
P _{IN}	INPUT CONTINUOUS WAVE POWER	15 dBm	
P _D	POWER DISSIPATION	.3 W	
T _{CH}	OPERATING CHANNEL TEMPERATURE	150 ⁰ C	<u>2/3</u> /
T_{M}	MOUNTING TEMPERATURE (30 SECONDS)	320 °C	
T _{STG}	STORAGE TEMPERATURE	-65 to 150 °C	

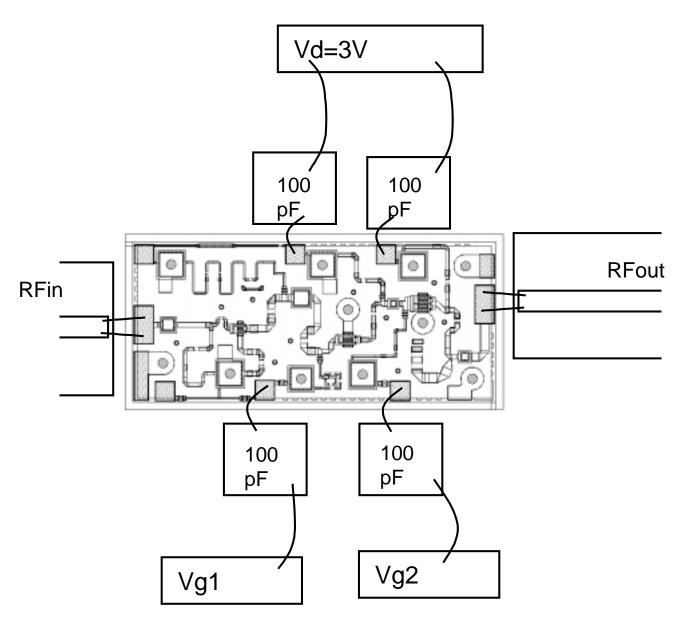
- $\underline{1}$ / Total current for all stages.
- 2/ These ratings apply to each individual FET.
- $\underline{3}$ / Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{4}$ These ratings represent the maximum operable values for the device.

DC PROBE TESTS ($T_A = 25 \text{ °C} \pm 5 \text{ °C}$)

Symbol	Parameter	Minimum	Maximum	Value
Idss	Saturated Drain Current			mA
V _P	Pinch-off Voltage	-1.5	-0.5	V
BVGS	Breakdown Voltage gate-source			V
BVGD	Breakdown Voltage gate-drain			V

ON-WAFER RF PROBE CHARACTERISTICS $(T_A=25~^{\circ}C\pm5^{\circ}C)$ $V_d=3~V,~I_{d1}=15~mA,~I_{d2}=30~mA$

Symbol	Parameter	Test Condition	Limit		Units	
			Min	Тур	Max	
Gain	Small Signal Gain	F = 21 - 27 GHz	18			dB
NF	Noise Figure	F = 21 - 26.5 GHz			2	dB
PWR	Output Power @ P1dB	F = 21 - 27 GHz	10			dBm


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

2)

November 5, 2001

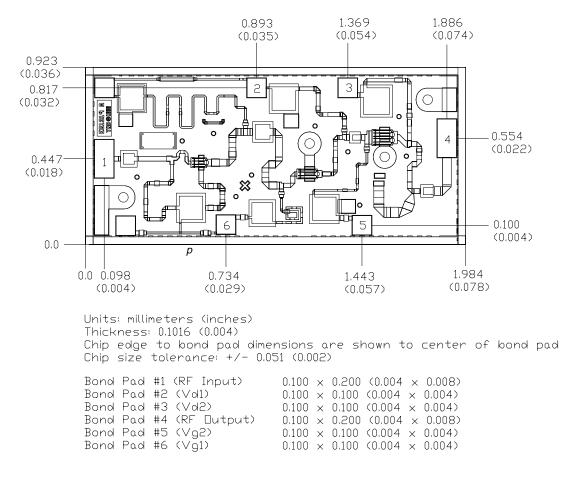
TGA1319A-EPU

Notes: 1. Vg1 and Vg2 may be sourced from the same supply. 2. Positive or negative gate bias may be required to achieve recommended operating point.

TGA1319A - Recommended Assembly Drawing

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

(3)



Advance Product Information

November 5, 2001

TGA1319A-EPU

4

Mechanical Drawing

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

Advance Product Information

November 5, 2001

TGA1319A-EPU

5

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.