TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TD62083AFNG,TD62084AFNG

8CH DARLINGTON SINK DRIVER

The TD62083AFNG and TD62084AFNG are high-voltage, high-current darlington drivers comprised of eight NPN darlington pairs.

All units feature integral clamp diodes for switching inductive loads.

Applications include relay, hammer, lamp and display (LED) drivers.

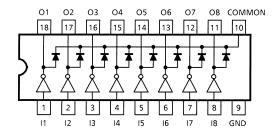
Please observe the thermal condition for using. This devices are a product for the Pb free(Sn-Ag).

FEATURES

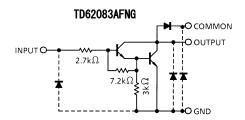
Package Type : SSOP18 pin
 High Sustaining Voltage Output : 50 V (Min)

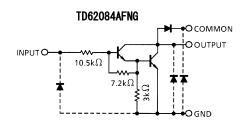
• Output Current (Single Output) : 500 mA / ch (Max)

• Output Clamp Diodes


• Inputs compatible with Various Types of Logic.

TYPE	INPUT BASE RESISTOR	DESIGNATION
TD62083AFNG	2.7 kΩ	TTL, 5-V CMOS
TD62084AFNG	10.5 kΩ	6~15-V P-MOS, CMOS


SSOP18-P-225-0.65


Weight: 0.09 g (Typ.)

PIN CONNECTION (TOP VIEW)

SCHEMATICS (EACH DRIVER)

Note: The input and output parasitic diodes cannot be used as clamp diodes.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Output Sustaining Voltage	V _{CE (SUS)}	-0.5~50	V
Output Current	lout	500	mA / ch
Input Voltage	V _{IN}	-0.5~30	V
Clamp Diode Reverse Voltage	V _R	50	V
Clamp Diode Forward Current	I _F	500	mA
Power Dissipation	P _D (Note)	0.96	W
Operating Temperature	T _{opr}	-40~85	°C
Storage Temperature	T _{stg}	T _{stg} -55~150	

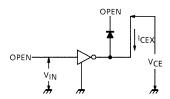
Note: On Glass Epoxy PCB (50 × 50 × 1.6 mm Cu 40%)

RECOMMENDED OPERATING CONDITIONS (Ta = -40-85°C)

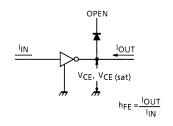
CHARACTERISTIC		SYMBOL	CONDITION		MIN	TYP.	MAX	UNIT
Output Sustaining Voltage		V _{CE} (SUS)			0	_	50	V
Output Current			DC 1 Circuit		_	_	350	
		I _{OUT} (Note)	T _{pw} = 25 ms, 8 Circuits Ta = 85°C, T _j = 120°C	Duty = 10%	0	_	260	mA / ch
				Duty = 50%	0	_	90	
Input Voltage		V _{IN}			0	_	30	V
Input Voltage (Output ON)	TD62083	V _{IN(ON)}			2.5	_	30	V
	TD62084				8	_	30	v
Clamp Diode Reverse Voltage		V _R			_	_	50	V
Clamp Diode Forward Current		l _F			_	_	400	mA
Power Dissipation		P _D	Ta = 85°C (Note)		_	_	0.4	W

2

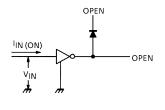
Note: On Glass Epoxy PCB (50 × 50 × 1.6 mm Cu 40%)

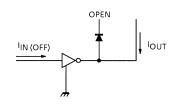


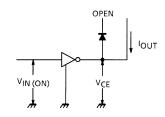
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

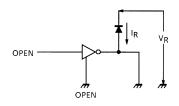

CHARACTERI	STIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		TEST CONDITION		TEST CONDITION		TEST CONDITION		MIN	TYP.	MAX	UNIT
Output Leakage Current	TD62083	I _{CEX}	1 }	V _{CE} = 50 V	Ta = 25°C	_	_	50	μА						
				V _{CE} = 50 V	Ta = 85°C	_	_	100							
	TD62084			V _{CE} = 50 V	V _{IN} = 1 V	_	_	500							
				I _{OUT} = 350 mA, I _{IN} = 500 μA		_	1.3	1.6							
Output Saturation Voltage		V _{CE (sat)}	2	I _{OUT} = 200 mA, I _{IN} = 350 μA		_	1.1	1.3	V						
				I _{OUT} = 100 m/	A, I _{IN} = 250 μA	_	0.9	1.1							
	TD62083			V _{IN} = 3.85 V		_	0.93	1.35	mA						
Input Current	TD00004	I _{IN (ON)}	3	V _{IN} = 5 V		_	0.35	0.5							
	TD62084			V _{IN} = 12 V		_	1.0	1.45							
		I _{IN (OFF)}	4	I _{OUT} = 500 μA, Ta = 85°C		50	65	_	μA						
	TD62083	V _{IN} (ON)		V _{CE} = 2 V, I _{OUT} = 200 mA		_	_	2.4	V						
			5	V _{CE} = 2 V, I _{OUT} = 250 mA		_	_	2.7							
				V _{CE} = 2 V, I _{OUT} = 300 mA		_	_	3.0							
Input Voltage	TD62084			V _{CE} = 2 V, I _{OUT} = 125 mA		_	_	5.0							
				V _{CE} = 2 V, I _{OUT} = 200 mA		_	_	6.0							
				V _{CE} = 2 V, I _{OUT} = 275 mA		_	_	7.0							
				V _{CE} = 2 V, I _{OUT} = 350 mA		_	_	8.0							
DC Current Transfer Ratio		h _{FE}	2	V _{CE} = 2 V, I _{OUT} = 350 mA		1000	_	_							
Clamp Diode Reverse Current		I _R		Ta = 25°C V _R = 50 V		_	_	50							
			6	Ta = 85°C V _R = 50 V		_	_	100	μA						
Clamp Diode Forward Voltage		V _F	7	I _F = 350 mA		_	_	2.0	V						
Input Capacitance		C _{IN}	_			_	15	_	pF						
Turn-On Delay		ton		R _L = 125 Ω, V _{OUT} = 50 V		_	0.1	_							
Turn-Off Delay		t _{OFF}	8	R _L = 125 Ω, V _{OUT} = 50 V		_	0.2	_	μs						

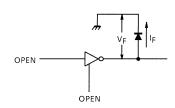
TEST CIRCUIT

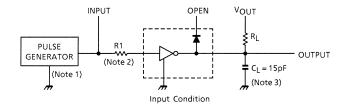

1. I_{CEX}

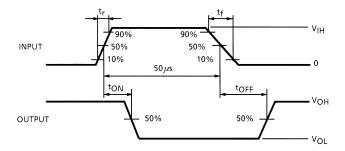

2. V_{CE (sat)}, h_{FE}


3. I_{IN (ON)}


4. I_{IN (OFF)}


5. V_{IN (ON)}


6. I_R



7. V_F

8. ton, toff

Note 1: Pulse Width 50 µs, Duty Cycle 10%

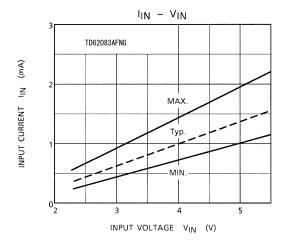
Output Impedance 50 Ω , $t_f \le 5$ ns, $t_f \le 10$ ns

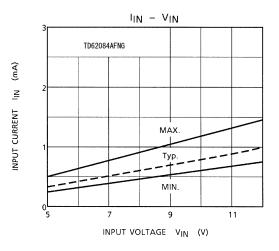
Note 2: See below

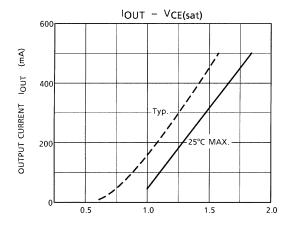
Input Condition

TYPE NUMBER	R1	V _{IH}
TD62083AFN	0	3 V
TD62084AFN	0	8 V

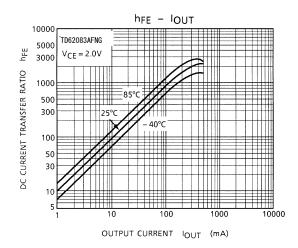
Note 3: CL includes probe and jig capacitance

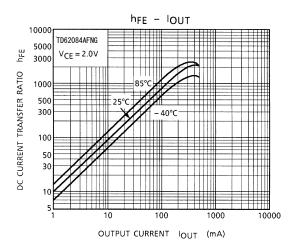

PRECAUTIONS for USING

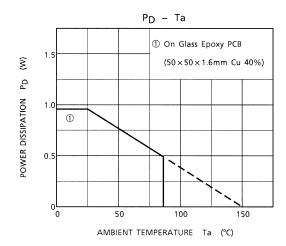

This IC does not include built-in protection circuits for excess current or overvoltage.

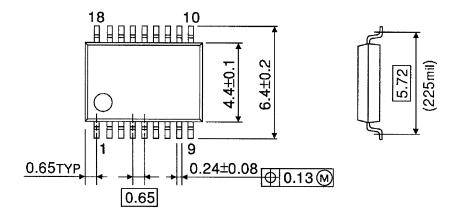

If this IC is subjected to excess current or overvoltage, it may be destroyed.

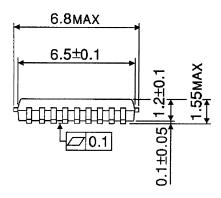
Hence, the utmost care must be taken when systems which incorporate this IC are designed.

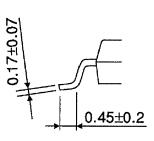

Utmost care is necessary in the design of the output line, COMMON and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.










7

PACKAGE DIMENSIONS

SSOP18-P-225-0.65 Unit: mm

Weight: 0.09 g (Typ.)

8

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - · solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.