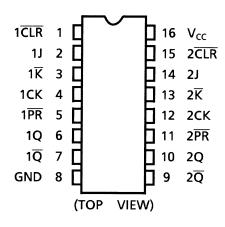
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74AC109P,TC74AC109F,TC74AC109FN

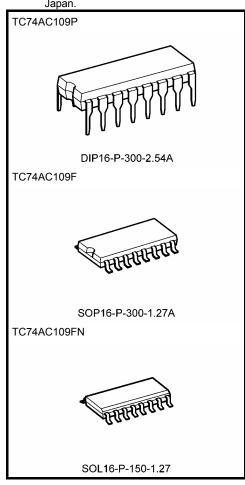
Dual J-K Flip Flop with Preset and Clear

The TC74AC109 is an advanced high speed CMOS DUAL J- \overline{K} FLIP FLOP fabricated with silicon gate and double-layer metal wiring C2MOS technology.

It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

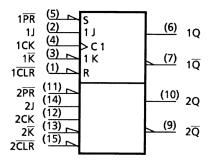

In accordance with the logic level given J and \overline{K} input this device changes state on positive going transition of the clock pulse. \overline{CLEAR} and \overline{PRESET} are independent of the clock and accomplished by a low logic level on the corresponding input.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

- High speed: $f_{max} = 200 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A$ (max) at $T_a = 25$ °C
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 24$ mA (min) Capability of driving 50 Ω transmission lines.
- Balanced propagation delays: t_{pLH} ≃ t_{pHL}
- Wide operating voltage range: V_{CC} (opr) = 2 to 5.5 V
- Pin and function compatible with 74F109

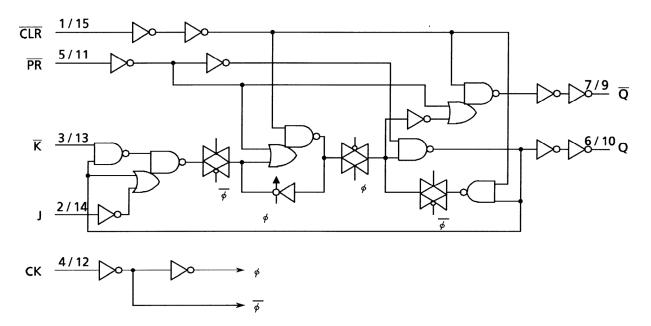
Pin Assignment


Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOL16-P-150-1.27 : 0.13 g (typ.)

IEC Logic Symbol



Truth Table

		Inputs		Out	puts	Function	
CLR	PR	J	ĸ	CK	Q	Q	Function
L	Н	Х	Х	Х	L	Н	Clear
Н	L	Х	Х	Х	Н	L	Preset
L	L	Х	Х	Х	Н	Н	
Н	Н	L	Н	\downarrow	Qn	\overline{Q}_n	No Change
Н	Н	L	L		L	Н	
Н	Н	Н	Н		Н	L	
Н	Н	Н	L		\overline{Q}_n	Qn	Toggle
Н	Н	Х	Х	\neg	Qn	\overline{Q}_n	No Change

X: Don't care

System Diagram

2

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	−0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±50	mA
DC output current	lout	±50	mA
DC V _{CC} /ground current	Icc	±100	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	–65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C should be applied up to 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0 to 5.5	V	
Input voltage	V _{IN}	0 to V _{CC}	V	
Output voltage	V _{OUT}	0 to V _{CC}	V	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dV	0 to 100 (V _{CC} = 3.3 ± 0.3 V)	ns/V	
input rise and fail time	avav	0 to 20 (V _{CC} = 5 \pm 0.5 V)	115/V	

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

3

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition VCC (V)			Ta = 25°C			Ta = -40 to 85°C		Unit		
Sharastonistiss	Cymbol				V _{CC} (V)	Min	Тур.	Max	Min	Max	Onit	
		_		2.0	1.50	_	_	1.50	_			
High-level input voltage	V_{IH}			3.0	2.10	_	_	2.10		V		
, and the second				5.5	3.85	_	_	3.85	_			
					2.0	_	_	0.50	_	0.50		
Low-level input voltage	V_{IL}		_		3.0	_	_	0.90	_	0.90	V	
, and the second					5.5	_	_	1.65	—	1.65		
					2.0	1.9	2.0	_	1.9	_	V	
	V _{ОН}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA	3.0	2.9	3.0	_	2.9	_			
High-level output					4.5	4.4	4.5	_	4.4	_		
voltage			$I_{OH} = -4 \text{ mA}$		3.0	2.58	_	_	2.48	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			$I_{OH} = -24 \text{ mA}$		4.5	3.94	_	_	3.80	_		
			$I_{OH} = -75 \text{ mA}$	(Note)	5.5	_	_	_	3.85	_		
	V _{OL}	V _{IN} = V _{IH} or V _{IL}			2.0	_	0.0	0.1	_	0.1		
			$I_{OL} = 50 \mu A$		3.0	_	0.0	0.1	_	0.1		
Low-level output					4.5	_	0.0	0.1	_	0.1	V	
voltage			$I_{OL} = 12 \text{ mA}$		3.0	_	_	0.36	_	0.44	V	
			$I_{OL} = 24 \text{ mA}$		4.5	_	_	0.36	_	0.44		
			$I_{OL} = 75 \text{ mA}$	(Note)	5.5	_	_	_	_	1.65		
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		5.5		_	±0.1	_	±1.0	μА		
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND		5.5		_	4.0	_	40.0	μА		

Note: This spec indicates the capability of driving 50 Ω transmission lines.

One output should be tested at a time for a 10 ms maximum duration.

Timing Requirements (input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C	Ta = -40 to 85°C	Unit
			V _{CC} (V)	Limit	Limit	
Minimum pulse width	t _{W (L)}		3.3 ± 0.3	8.0	8.0	no
(CK)	t _{W (H)}	_	5.0 ± 0.5	5.0	5.0	ns
Minimum pulse width	4		3.3 ± 0.3	7.0	7.0	20
($\overline{CLR},\;\;\overline{PR})$	t _{W (L)}	_	5.0 ± 0.5	5.0	5.0	ns
Minimum set-up time	4		3.3 ± 0.3	9.0	9.0	20
wiiniinum set-up time	t _S		5.0 ± 0.5	5.0	5.0	ns
Minimum hold time	4.		3.3 ± 0.3	0.0	0.0	20
winimum noid time	t _h	_	5.0 ± 0.5	0.0	0.0	ns
Minimum removal time	4		3.3 ± 0.3	3.0	3.0	20
(CLR , PR)	t _{rem}	_	5.0 ± 0.5	2.0	2.0	ns

AC Characteristics (CL = 50 pF, RL = 500 Ω , input: $t_r = t_f = 3$ ns)

Characteristics	Symbol	Test Condition		Ta = 25°C			Ta = -40 to 85°C		Unit
	,		V _{CC} (V)	Min	Тур.	Max	Min	Max	
Propagation delay time $ (\text{CK-Q}, \ \overline{\textbf{Q}} \) $	t _{pLH} t _{pHL}	_	3.3 ± 0.3 5.0 ± 0.5		8.2 6.1	13.9 8.7	1.0 1.0	16.0 10.0	ns
Propagation delay time	t _{pLH}	_	3.3 ± 0.3 5.0 ± 0.5	_	8.5 6.4	14.4 9.1	1.0 1.0	16.6 10.5	ns
Maximum clock frequency	f _{max}	_	3.3 ± 0.3 5.0 ± 0.5	55 100	120 160	_ _	55 100	_ _	MHz
Input capacitance	C _{IN}			_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note)			_	82	_	_	_	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

5

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2$ (per F/F)

Package Dimensions

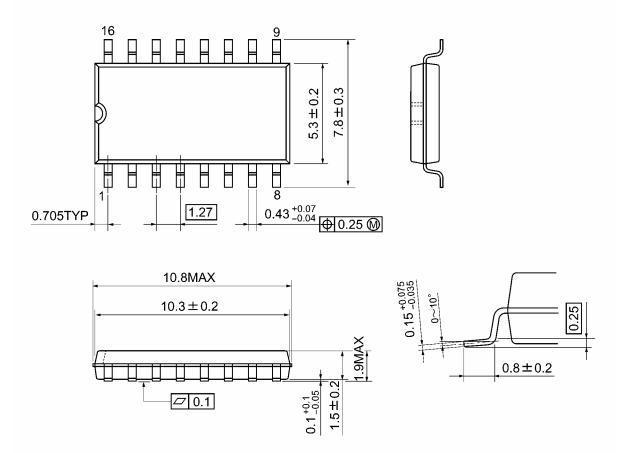
DIP16-P-300-2.54A

Unit: mm

19.75MAX

19.25±0.2

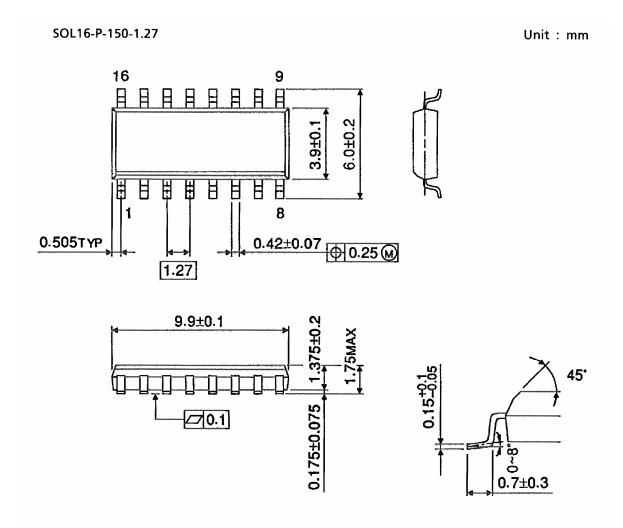
0.735TYP


2.54

Unit: mm

Weight: 1.00 g (typ.)

Package Dimensions


SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

8

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

9