TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

$$
\text { TA } 8523 \text { F }
$$

PB BATTERY CHARGER IC

TA8523F is applicable to two cells for mutual charge and discharge. This IC includes reference voltage circuit, hysteresis comparator, and supply current circuit. Battery is charged by the current is made from external Resistance, Transistor, and this IC has function to be change to 5 mA at charging voltage 4.90 V (Typ.).

FEATURES

- Reference voltage can be adjusted by ADJ 1, ADJ 2.
- Charging Current can be set by external Tr, R.

Weight : 0.1g (Typ.)

- Built-in enable function.

BLOCK DIAGRAM

MAXIMUM RATINGS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V_{CC}	14	V
Enable Terminal Voltage	V_{EN}	$-0.3 \sim \mathrm{~V}_{\mathrm{CC}}$	V
F.B, Drive Terminal Voltage	V_{FB}, DRIVE	$-0.3 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V
ADJ 1, ADJ 2 Terminal Voltage	$\mathrm{V}_{\text {ADJ }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V
Tr. Drive Current	I_{dr}	~ 10	mA
Power Dissipation	P_{D}	0.4	W
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	$0 \sim 60$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITION

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V_{CC}	$7.5 \sim 12$	V
Enable Terminal Voltage	V_{EN}	$2.5 \sim \mathrm{VCC}_{\mathrm{CC}}$	V
Tr. Drive Current	I_{dr}	~ 5	mA

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \end{array}$	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current	${ }^{\text {ICC }}$	1	Enable ; Open	-	5	16	mA
Reference Voltage	$V_{\text {ref }}$	2	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note)	4.80	4.90	5.00	V
Output Voltage (F. B Terminal)	$V_{\text {F.B }}$	3	$V_{C C}-F . B$	1.1	1.25	1.4	V
Leak Current	leak	4	$\mathrm{V}_{\text {CC }} \rightarrow$ OFF	-	-	20	$\mu \mathrm{A}$
Hysterisis Voltage	$\mathrm{V}_{\text {HYS }}$	-	-	-	200	-	mV

(Note) Connection of ADJ Terminal is for the most neary value of $\mathrm{V}_{\text {ref }}=4.90 \mathrm{~V}$, that is

$$
\text { one out of }\left\{\begin{array}{l}
\text { 8pin } \rightarrow \text { GND } \\
7 \text { pin } \rightarrow \text { GND } \\
7,8 \text { pin } \rightarrow \text { OPEN }
\end{array}\right.
$$

TEST CIRCUIT
(1) Supply Current (ICC)

(3) Output Voltage (F.B Terminal) ($V_{F . B}$)

(2) Reference Voltage ($V_{\text {ref }}$)

$\begin{array}{lll}\text { (1) } & \text { SWA } \rightarrow \text { ON } & \text { SWB } \rightarrow \text { OFF } \\ \text { (2) } & \text { SWA } \rightarrow \text { OFF } & \text { SWB } \rightarrow \text { ON } \\ \text { (3) } & \text { SWA } \rightarrow \text { OFF } & \text { SWB } \rightarrow \text { OFF }\end{array}$
(4) Leak Current (leak)

OUTLINE DRAWING

Weight: 0.1g (Typ.)

