
STANFORD MICRODEVICES

Product Description

The Stanford Microdevices' STQ-2016 is a direct quadrature modulator targeted for use in a wide range of communications systems. This device features a wide 800-2500 MHz operating frequency band, excellent carrier and sideband suppression, and a low broadband noise floor.

The STQ-2016 uses silicon germanium device technology and delivers a typical output power of -10dBm with greater than 60dB IM3 suppression. A shutdown feature is included that, when enabled, attenuates the output by 60dB.

Functional Block Diagram

Advanced Data Sheet

STQ-2016 800 - 2500 MHz Direct Quadrature Modulator

16 pin TSSOP with Exposed Pad Package Body: 0.20 x 0.17 x 0.04 (inches) 5.0 x 4.4 x 1.0 (mm)

Product Features

- 800-2500 MHz operating frequency
- No external IF filter
- Very low noise floor performance
- Excellent carrier and sideband suppression
- Low LO drive requirements
- Shut-down feature
- Single 5 volt supply
- Supports wideband baseband input

Applications

- Digital communication system
- Spread spectrum communication systems
- Cellular/PCS/DCS/3G transceivers
- ISM band transceivers
- GMSK, QPSK, QAM, SSB modulators

Key Specifications

Parameters	Test Conditions (V _s =5.0V, I=73mA, T=25 ^o C)	Unit	Min.	Тур.	Max.		
Frequency Range		MHz	800		2500		
Output P1dB	f _{LO} = 2000 MHz	dBm		+3			
Carrier Feedthrough	f _{LO} = 2000 MHz	dBm		-40			
Sideband Suppression	f _{LO} = 2000 MHz	dB		40			
Broadband Noise Floor	f_{LO} = 2000 MHz, baseband inputs tied to 1.9V_{DC}, -20MHz offset from carrier	dBm/Hz		-154			
LO Drive Level		dBm	-8	-5	-2		
See page 2 for general test conditions							

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

http://www.stanfordmicro.com 06/25/01 rev 10.0

Absolute Maximum Patings

Advanced Data Sheet

STQ-2016 Direct Quadrature Modulator

Parameters	Value	Unit	Test Con	est Conditions		
Supply Voltage	6.0	V _{DC}	VS	+5V		
LO, RF Input	+10	dBm	TA	+25°C		
Min Input Voltage (BBIP, BBIN, BBQP, BBQN)	0	V _{DC}		1.9V DC bias, 200kHz fre-		
Max Input Voltage (BBIP, BBIN, BBQP, BBQN)	3	V _{DC}	Baseband Inputs	quency, 300mVp-p per pin = 600mVp-p differential drive, I		
Operating Temperature	-40 to +85	°C		and Q signals in quadrature		
Storage Temperature	-65 to +150	°C	LO Input	-5dBm @ 2000 MHz		

Product Specifications – RF Output

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Frequency Range		MHz	800		2500
Output Power		dBm		-11.5	
RF Port Return Loss	matched to 50 ohm ref	dB	14		
Output P1dB		dBm		+3	
Carrier Feedthrough		dBm		-40	
Sideband Suppression		dB		40	
IM3 Suppression	two-tone baseband input @ 600mVp-p differential per tone	dB		65	
Broadband Noise Floor	baseband inputs tied to 1.9V _{DC} , -20MHz offset from carrier	dBm/Hz		-154	
Quadrature Phase Error		deg	-2		+2
I/Q Amplitude Balance		dB	-0.2		+0.2

Product Specifications - Modulation Input

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Baseband Frequency Input	-3dB bandwidth, baseband inputs terminated in 50 ohms	MHz	DC		1000
Baseband Input Resistance	per pin	kohms		4.4	
Baseband Input Capacitance	per pin	pF		0.5	

Product Specifications - LO Input

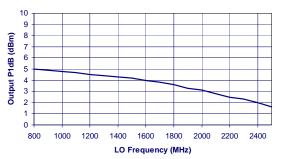
Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Usable LO Frequency		MHz	800		2500
LO Drive Level		dBm	-8	-5	-2
LO Port Return Loss	matched to 50 ohm ref	dB	14		

Product Specifications – Miscellaneous

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Shut-Down Attenuation		dB		60	
Shut-Down Pin Resistance	@ 1MHz	kohm		11.9	
Shut-Down Pin Capacitance	@ 1MHz	pF		5.2	
Shut-Down Input Thresholds		—		CMOS	
Shut-Down Settling Time		ns		<500	
Supply Voltage		V	+4.75	+5	+5.25
Supply Current		mA		73	
Device Thermal Resistance	junction-case	°C/W		TBD	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omnisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC



Advanced Data Sheet STQ-2016 Direct Quadrature Modulator

Typical Device Performance

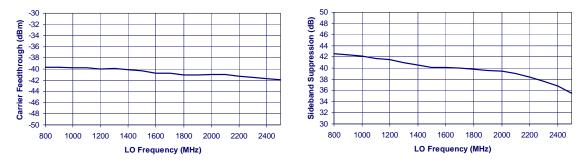


Fig.2 Output P1dB vs. LO Frequency

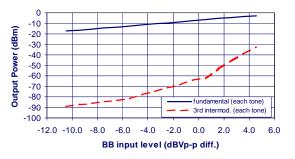


Fig.3 Carrier Feedthrough vs. LO Frequency

Fig.4 Sideband Suppression vs. LO Frequency

Fig.5 Intermodulation Distortion vs. SSB Output Power

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC 3

http://www.stanfordmicro.com 06/25/01 rev 10.0

Advanced Data Sheet **STQ-2016 Direct Quadrature Modulator**

F Port					LO Port				
Frequency	Single-Ended		Diffe	Differential		Single-Ended		Differential	
(MHz)	Mag.	Ang.	Mag.	Ang.	Frequency (MHz)	Mag.	Ang.	Mag.	Ang.
800	0.364	162.7	0.125	89.26	800	0.948	-29.69	0.106	81.92
900	0.366	160.3	0.141	86.34	900	0.940	-33.43	0.119	80.9
1000	0.368	157.9	0.156	83.74	1000	0.931	-37.18	0.132	79.89
1100	0.370	155.6	0.171	81.38	1100	0.921	-40.95	0.145	78.88
1200	0.372	153.3	0.186	79.2	1200	0.910	-44.75	0.158	77.87
1300	0.374	151.1	0.200	77.18	1300	0.898	-48.56	0.171	76.87
1400	0.377	148.8	0.214	75.27	1400	0.886	-52.39	0.184	75.86
1500	0.380	146.6	0.227	73.48	1500	0.873	-56.25	0.197	74.85
1600	0.383	144.4	0.240	71.77	1600	0.859	-60.13	0.210	73.85
1700	0.387	142.2	0.253	70.15	1700	0.845	-64.03	0.223	72.84
1800	0.391	139.9	0.265	68.6	1800	0.830	-67.96	0.236	71.84
1900	0.395	137.6	0.277	67.12	1900	0.814	-71.89	0.248	70.84
2000	0.398	135.2	0.289	65.71	2000	0.798	-75.84	0.261	69.84
2100	0.402	132.7	0.301	64.35	2100	0.781	-79.79	0.273	68.84
2200	0.404	130.3	0.312	63.04	2200	0.765	-83.77	0.286	67.84
2300	0.406	128.0	0.322	61.79	2300	0.748	-87.78	0.298	66.85
2400	0.407	125.7	0.333	60.58	2400	0.732	-91.83	0.310	65.86
2500	0.408	123.6	0.343	59.41	2500	0.716	-95.94	0.322	64.86

Small Signal S-Parameters

Notes:

1. VCC = +5.0V, T = +25°C.

2. For single-ended S-parameters, the corresponding differential pin is left floating.

3. Data is referenced to the foot of the package lead and does not include the applications circuit.

4. All data simulated.

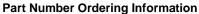
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC

Advanced Data Sheet

STQ-2016 Direct Quadrature Modulator

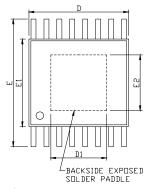
Pin Out	Description	1	
Pin #	Function	Description	Additional Comments
1	BBQP	Q-channel baseband input, positive terminal	Nominal DC bias voltage is 1.9V (biased internally)
2	VCC	Positive supply (+5V)	
3	VEE	Ground	
4	LOP	Local oscillator input, positive terminal	Nominal DC voltage is 2.0V. Input should be AC-coupled.
5	LON	Local oscillator input, negative terminal	Nominal DC voltage is 2.0V. Input should be AC-coupled.
6	VEE	Ground	
7	SD	Shut-down control	CMOS logic levels. Logic high = normal operation; logic low = shut-down enabled.
8	BBIP	I-channel baseband input, positive terminal	Nominal DC bias voltage is 1.9V (biased internally)
9	BBIN	I-channel baseband input, negative terminal	Nominal DC bias voltage is 1.9V (biased internally)
10	VCC	Positive supply (+5V)	
11	VEE	Ground	
12	RFN	RF output, negative terminal	Nominal DC voltage is 2.4V. Output should be AC-coupled.
13	RFP	RF output, positive terminal	Nominal DC voltage is 2.4V. Output should be AC-coupled.
14	VEE	Ground	
15	VCC	Positive supply (+5V)	
16	BBQN	Q-channel baseband input, negative terminal	Nominal DC bias voltage is 1.9V (biased internally)


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC 5

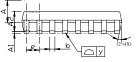
Advanced Data Sheet

STQ-2016 Direct Quadrature Modulator



Part Number	Reel Size	Devices/Reel		
STQ-2016	TBD	TBD		

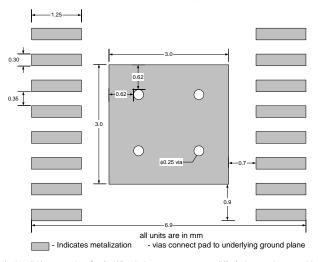
Part Symbolization


The part will be symbolized with a "TBD" marking designator on the top surface of the package.

Package Dimensions

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.


ų	

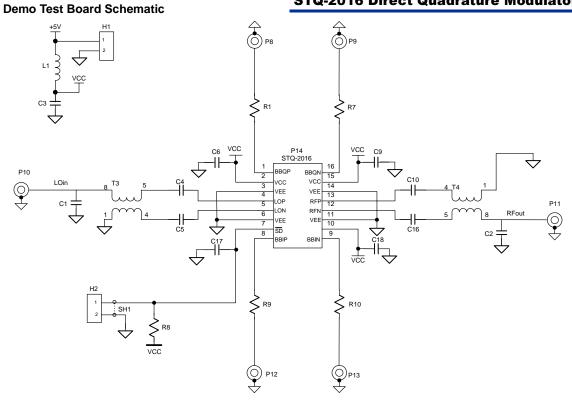
NOTE 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED 3. COPLANARITY : 0.1 mm 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED

INCH DIMENSIONS ARE NOT NECESSARILY EXACT. 5. FOLLOWED FROM JEDEC MO-153

DIMENSIONS IN MILLIMETE MIN NOM N DIMEN SYMBOLS MIN MAX NOM MAX NOM 0.045 1.15 A 0.000 0.00 0.000
0.001
0.007
0.004 0.80
0.19
0.09 1.00 1.05 0.30 0.20 5.10 0.039 0.0011 A. b 5.00 2.80 0.197 4.90 0.193 0.201 DI 0.110 6.40 4.40 2.80 0.65 0.60 0.252 4.30 4.50 0.169 0.110 0.026 0.75 0.018 0.45 0.030 0.004 0° 0° θ 8

Test PCB Pad Layout

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions Stanford Microdevices assumes no responsibility for the use of this information and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved


522 Almanor Ave., Sunnyvale, CA 94086

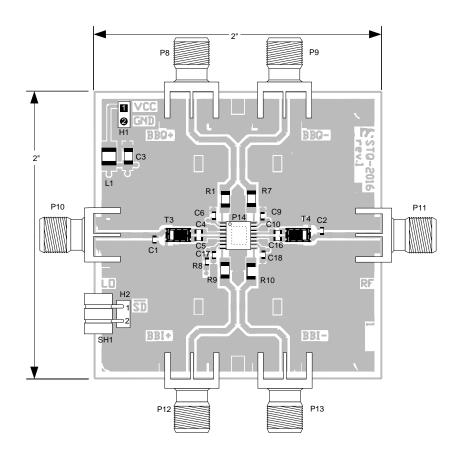
Phone: (800) SMI-MMIC 6

http://www.stanfordmicro.com 06/25/01 rev 10.0

Advanced Data Sheet **STQ-2016 Direct Quadrature Modulator**

Bill of Materials (for evaluation at 2GHz)

Component Designator	Value	Qty	Vendor	Part Number	Description
P14		1	SMDI	STQ-2016	SiGe Direct Quadrature Modulator
P8, P9, P10, P11, P12, P13		6	Johnson Components	142-0701-851	SMA connector, end launch with tab, for .062" thick board
H1, H2		2	AMP	640453-2	2-pin header, right angle
T3, T4	1:1	2	Panasonic	EHF-FD1619	RF transformer, 1200-2200MHz
L1	1uH	1	Panasonic	ELJ-FA1R0KF2	Inductor, 1210 footprint, ±10% tolerance
R1, R7, R9, R10	200 ohm	4	Venkel	CR1206-8W-2000T	Resistor, 1206 footprint, ±1% tolerance
R8	1 kohm	1	Venkel	CR0603-16W-1001FT	Resistor, 0603 footprint, ±1% tolerance
C1, C2	0.5pF	2	Venkel	C0603COG500-0R5CNE	Capacitor, 0503 footprint ±0.25pF tolerance
C6, C18	6.8pF	2	Venkel	C0603COG500-6R8CNE	Capacitor, 0603 footprint, COG dielectric, ±5% tolerance
C9, C17	1nF	2	Venkel	C0603COG500-102JNE	Capacitor, 0603 footprint, COG dielectric, ±5% tolerance
C3	2.2uF	1	Venkel	C1206Y5V160-225ZNE	Capacitor, 1206 footprint, Y5V dielectric, 16V rating
C4, C5, C10, C16	2.2pF	4	Venkel	C0603COG500-2R2CNE	Capacitor, 0603 footprint, COG dielectric, ±0.25pF toler- ance
SH1		1	3M	929950-00	Shunt for 2-pin header


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC 7

Advanced Data Sheet **STQ-2016 Direct Quadrature Modulator**

Demo Test Board (Fully Assembled PCB)

Note: Remove SH1 to enable modulated output.

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC 8