Product Description

Stanford Microdevices' SSW-508 is a high performance Gallium Arsenide Field Effect Transistor MMIC switch housed in a low-cost surface-mountable 8 -pin small outline plastic package.

This single-pole, single-throw, non-reflective switch consumes less than 50 uA and operates at -5 V and 0 V for control bias. P1dB at -5 V is +25 dBm typical and can be increased to +28 dBm with -8 V supply.

The die is fabricated using 0.5 micron FET process with gold metallization and silicon nitride passivation to achieve excellent performance and reliability.

SSW-508

DC-4 GHz GaAs MMIC SPST Switch

Product Features

- High Isolation : 40dB at $1 \mathrm{GHz}, 30 \mathrm{~dB}$ at 2 GHz
- Low DC Power Consumption
- Low Insertion Loss : 1.0dB at 2GHz
- Non-Reflective
- Low Cost Small Outline Plastic Package

Applications

- Analog/Digital Wireless Communications
- AMPS, PCS, DEC and GSM Bands

Electrical Specifications at $\mathbf{T a}=25 \mathrm{C}$

[^0] without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved

SSW-508 DC-4 GHz GaAs MMIC SPST Switch

Absolute Maximum Ratings

RF Input Power	$2 \mathrm{~W} \mathrm{Max}>500 \mathrm{MHz}$
Device Voltage	-10 V
Operating Temperature	-45 C to +85 C
Storage Temperature	-65 C to +150 C
Thermal Resistance	20 deg C/W

Truth Table

V1	V2	J1-J2	J1-J3
-5	0	Low Loss	Isolation
0	-5	Isolation	Low Loss

Pin Out

Pin	Function
1	J1
2	V1
3	V2
4	GND
5	J2
6	GND
7	GND
8	GND

Switch Schematic

Pin numbers shown for reference only, not marked on part

On Port Input/Output VSWR vs. Frequency
Vcontrol =-5 V

[^0]: The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.

