

Main Product Characteristics:

V _{CES}	1350V	
V _{CE} (sat)	1.9V (typ.)	
I _D	15A @ TC = 100°C	

Features and Benefits:

- Advanced Trench-FS Process Technology
- Low Collector-Emitter Saturation Voltage, Typical Data is 1.9V@15A
- Fast Switching
- High Input Impedance
- Pb- Free Product
- Power Switch Circuit of Induction Cooker

Rojes Compliant

Description:

It utilizes the latest processing techniques to achieve the high cell density and reduces $V_{CE}(sat)$ rating. These features combine to make this design an extremely efficient and reliable device for use in power switching application of induction cooker and a wide variety of other applications.

Absolute max Rating:

Symbol	Parameter	Max.	Units
I _C @ TC = 25°C	Continuous Collector Current	30	
I _C @ TC = 100°C	Continuous Collector Current	15	А
I _{CM}	Pulsed Collector Current	45	
	Power Dissipation @ TC = 25°C	260	W
$P_D @ IC = 25^{\circ}C$	Power Dissipation @ TC = 100°C	130	W
V _{CES}	Collector-Emitter Voltage	1350	V
V _{GES}	Gate-to-Emitter Voltage	± 30	V
TJ	Operating Junction Temperature Range	-55 to +175	°C
T _{STG}	Storage Temperature Range	-55 to +175	°C
TL	Maximum Temperature of Solding	260	°C

Thermal Resistance

Symbol	Characterizes	Тур.	Max.	Units
R _{0JC}	Junction-to-case①	—	0.6	°C/W
R _{0JA}	Junction-to-ambient 2	—	40	°C/W

Electrical Characterizes $@T_A=25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter breakdown voltage	1350	_	_	V	$V_{GE} = 0V, I_{C} = 0.5mA$
Maria a	Collector Emitter Saturation voltage	_	1.9	2.2	V	V _{GE} =15V, I _C =15A,T _C =25°C
V CE(sat)	Conector-Emilier Saturation voltage	_	2.05	_	V	V _{GE} =15V, I _C =15A,T _C =125°C
V _{GE(th)}	Gate threshold voltage	4.8	5.8	6.8	V	$V_{GE} = V_{CE}, I_D = 0.4 \text{mA}$
I _{CES}	Zero gate voltage collector current	_	_	100	μA	V _{CE} = 1350V
	Gate-to-Emitter forward leakage	_	—	300	μA	V _{GE} =30V
IGES			_	-300		V _{GE} = -30V
Qg	Total gate charge		165	_		I _c = 20A,
Q _{ge}	Gate-to-Emitter charge		12	_	nC	V _{CE} = 600V,
Q _{gc}	Gate-to-Collector("Miller") charge	_	55			$V_{GE} = 15V$
t _{d(off)}	Turn-Off delay time	_	190			V _{GE} =15V, Vcc=600V,
t _f	Fall time		100	_	ns	R _g =10Ω
E _{off}	Turn-Off delay time		0.8	_	mJ	I _C =15A, T _J = 25°C
Cies	Input capacitance		1250	_		$V_{GE} = 0V$
Coes	Output capacitance		40	_	pF	$V_{CE} = 25V$
Cres	Reverse transfer capacitance		32	_		f = 1MHz
t _{rr}	Reverse Recovery Time	very Time — 230 — ns T _J =		$T_J = 25^{\circ}C, I_F = 15A, di/dt =$		
Q _{rr}	Reverse Recovery Charge	_	2450	_	nC	20A/µs

Notes:

(1) These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heat sink, assuming maximum junction temperature of $TJ(MAX)=175^{\circ}C$. (2) The R $_{UA}$ is the sum of the thermal impedance from junction to case R $_{UC}$ and case to ambient.

Typical electrical and thermal characteristics

Figure 1: Typical Output Characteristics(T_J=25^oC)

Figure 2: Typical Output Characteristics(T_J=175^oC)

Figure 3. Typical Transfer Characteristics

Figure 5: Typical Diode Forward Characteristics

Figure 6. Forward Voltage as a Function of T_J

Figure 7. Typical $V_{\text{CE}(\text{sat})}$ as a Function of TJ

Typical electrical and thermal characteristics

Figure 9: Switching Time Vs Rg

Figure 11: Switching Loss Vs I_C

25

Typical electrical and thermal characteristics

Figure 15. Normalized Maximum Transient Thermal Impedance

Mechanical Data:

TO247 PACKAGE OUTLINE DIMENSION

+A2

0-shall	Din	ension In Millime	ters	Dimension In Inches		
Symbol	Min	Nom	Max	Min	Nom	Max
A	4.900	5.000	5.100	0.193	0.197	0.201
A1	2.300	2.405	2.510	0.091	0.095	0.099
A2	1.900	2.000	2.100	0.075	0.079	0.083
b	1.160	-	1.260	0.046	-	0.050
b1	1.150	1.185	1.220	0.045	0.047	0.048
b2	1.960	-	2.060	0.077	-	0.081
b3	1.950	1.985	2.020	0.077	0.078	0.080
b4	2.960	-	3.060	0.117	-	0.120
b5	2.950	2.985	3.020	0.116	0.118	0.119
C	0.590	-	0.660	0.023	-	0.026
c1	0.580	0.600	0.620	0.023	0.024	0.024
D	20.900	21.000	21.100	0.823	0.827	0.831
D1	16.250	16.550	16.850	0.640	0.652	0.663
D2	1.050	1.200	1.350	0.041	0.047	0.053
E	15.700	15.800	15.900	0.618	0.622	0.626
E1	13.100	13.300	13.500	0.516	0.524	0.531
E2	4.900	5.000	5.100	0.193	0.197	0.201
E3	2.400	2.500	2.600	0.094	0.098	0.102
е		5.44BSC			0.214BSC	
L	19.800	19.950	20.100	0.780	0.785	0.791
L1	-	-	4.300	-	-	0.169
Р	3.500	3.600	3.700	0.138	0.142	0.146
P1	-	-	7.400	-	-	0.291
P2	2.400	2.500	2.600	0.094	0.098	0.102
Q	5.600	-	6.000	0.220	-	0.236
S	6.15BSC			0.242BSC		
Т	9.800	-	10.200	0.386	-	0.402
U	6.000	-	6.400	0.236	-	0.252

Ordering and Marking Information

Device Marking: SSIG15N135H Package (Available) TO247 Operating Temperature Range C : -55 to 175 °C

Devices per Unit

Package Type	Units/ Tube	Tubes/Inner Box	Units/Inner Box	Inner Boxes/Carton Box	Units/Carton Box
TO247	30	8	240	5	1200

Reliability Test Program

Test Item	Conditions	Duration	Sample Size
High	T _j =125℃ to 150℃ @	168 hours	3 lots x 77 devices
Temperature	80% of Max	500 hours	
Reverse	V _{DSS} /V _{CES} /VR	1000 hours	
Bias(HTRB)			
High	T _j =150℃ @ 100% of	168 hours	3 lots x 77 devices
Temperature	Max V _{GES}	500 hours	
Gate		1000 hours	
Bias(HTGB)			

ATTENTION:

- Any and all Silikron products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Silikron representative nearest you before using any Silikron products described or contained herein in such applications.
- Silikron assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silikron products described or contained herein.
- Specifications of any and all Silikron products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- Silikron Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Silikron products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Silikron Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Silikron believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to
 product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the
 Silikron product that you intend to use.

Customer Service

Worldwide Sales and Service:

Sales@silikron.com

Technical Support:

Technical@silikron.com

Suzhou Silikron Semiconductor Corp.

11A, 428 Xinglong Street, Suzhou Industrial Park, P.R.China

TEL: (86-512) 62560688

FAX: (86-512) 65160705

E-mail: Sales@silikron.com