BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS

The LS160A/161A/162A/163A are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building blocks for counting, memory addressing, frequency division and other applications. The LS160A and LS162A count modulo 10 (BCD). The LS161A and LS163A count modulo 16 (binary).

The LS160A and LS161A have an asynchronous Master Reset (Clear) input that overrides, and is independent of, the clock and all other control inputs. The LS162A and LS163A have a Synchronous Reset (Clear) input that overrides all other control inputs, but is active only during the rising clock edge.

	BCD (Modulo 10) Binary (Modulo			
Asynchronous Reset	LS160A	LS161A		
Synchronous Reset	LS162A	LS163A		

- Synchronous Counting and Loading
- Two Count Enable Inputs for High Speed Synchronous Expansion
- Terminal Count Fully Decoded
- Edge-Triggered Operation
- Typical Count Rate of 35 MHz
- ESD > 3500 Volts

NOTE:
The Flatpak version
has the same pinouts (Connection
Diagram) as the Dual In-Line Package.

*MR for LS160A and LS161A *SR for LS162A and LS163A

LOADING (Note a)

ON

ON Semiconductor®

http://onsemi.com

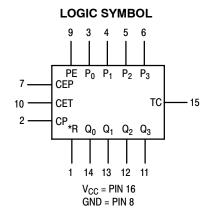
BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

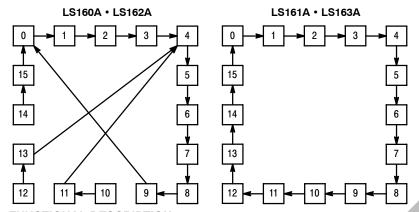
D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION


SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

PIN NAMES

HIGH LOW PE Parallel Enable (Active LOW) Input 1.0 U.L. 0.5 U.L. $P_0 - P_3$ Parallel Inputs 0.5 U.L. 0.25 U.L. CEP Count Enable Parallel Input 0.5 U.L. 0.25 U.L. CET Count Enable Trickle Input 1.0 U.L. 0.5 U.L. CP Clock (Active HIGH Going Edge) Input 0.5 U.L. 0.25 U.L. MR Master Reset (Active LOW) Input 0.5 U.L. 0.25 U.L. Synchronous Reset (Active LOW) Input SR 1.0 U.L. 0.5 U.L. $\mathsf{Q}_0\!-\!\mathsf{Q}_3$ Parallel Outputs (Note b) 10 U.L. 5 (2.5) U.L. Terminal Count Output (Note b) 10 U.L. 5 (2.5) U.L.


NOTES:

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

*MR for LS160A and LS161A *SR for LS162A and LS163A

STATE DIAGRAM

LOGIC EQUATIONS

 $\begin{array}{l} \text{Count Enable} = \text{CEP} \bullet \text{CET} \bullet \text{PE} \\ \text{TC for LS160A \& LS162A} = \text{CET} \bullet \text{Q}_0 \bullet \overline{\text{Q}}_1 \bullet \overline{\text{Q}}_2 \bullet \text{Q}_3 \\ \text{TC for LS161A \& LS163A} = \text{CET} \bullet \text{Q}_0 \bullet \text{Q}_1 \bullet \text{Q}_2 \bullet \text{Q}_3 \\ \end{array}$ Preset = PE • CP + (rising clock edge)
Reset = MR (LS160A & LS161A)
Reset = SR • CP + (rising clock edge)
(LS162A & LS163A)

The LS160A and LS162A can be preset to any state, but will not count beyond 9. If preset to state 10, 11, 12, 13, 14, or 15, it will return to its normal sequence within two clock pulses.

FUNCTIONAL DESCRIPTION

The LS160A/161A/162A/163A are 4-bit synchronous counters with a synchronous Parallel Enable (Load) feature. The counters consist of four edge-triggered D flip-flops with the appropriate data routing networks feeding the D inputs. All changes of the Q outputs (except due to the asynchronous Master Reset in the LS160A and LS161A) occur as a result of, and synchronous with, the LOW to HIGH transition of the Clock input (CP). As long as the set-up time requirements are met, there are no special timing or activity constraints on any of the mode control or data inputs.

Three control inputs — Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) — select the mode of operation as shown in the tables below. The Count Mode is enabled when the CEP, CET, and PE inputs are HIGH. When the PE is LOW, the counters will synchronously load the data from the parallel inputs into the flip-flops on the LOW to HIGH transition of the clock. Either the CEP or CET can be used to inhibit the count sequence. With the PE held HIGH, a LOW on either the CEP or CET inputs at least one set-up time prior to the LOW to HIGH clock transition will cause the existing output states to be retained. The AND feature of the two Count Enable inputs (CET • CEP) allows synchronous cascading without external gating and without delay accumulation over any practical number of bits or digits.

The Terminal Count (TC) output is HIGH when the Count Enable Trickle (CET) input is HIGH while the counter is in its maximum count state (HLLH for the BCD counters, HHHH

for the Binary counters). Note that TC is fully decoded and will, therefore, be HIGH only for one count state.

The LS160A and LS162A count modulo 10 following a binary coded decimal (BCD) sequence. They generate a TC output when the CET input is HIGH while the counter is in state 9 (HLLH). From this state they increment to state 0 (LLLL). If loaded with a code in excess of 9 they return to their legitimate sequence within two counts, as explained in the state diagram. States 10 through 15 do not generate a TC output.

The LS161A and LS163A count modulo 16 following a binary sequence. They generate a TC when the CET input is HIGH while the counter is in state 15 (HHHH). From this state they increment to state 0 (LLLL).

The Master Reset (MR) of the LS160A and LS161A is asynchronous. When the MR is LOW, it overrides all other input conditions and sets the outputs LOW. The MR pin should never be left open. If not used, the MR pin should be tied through a resistor to V_{CC}, or to a gate output which is permanently set to a HIGH logic level.

The active LOW Synchronous Reset (SR) input of the LS162A and LS163A acts as an edge-triggered control input, overriding CET, CEP and \overline{PE} , and resetting the four counter flip-flops on the LOW to HIGH transition of the clock. This simplifies the design from race-free logic controlled reset circuits, e.g., to reset the counter synchronously after reaching a predetermined value.

MODE SELECT TABLE

Z 2 N	`				
*SR	SR PE CET CEP		Action on the Rising Clock Edge ()	۲	
L	Х	Х	Х	RESET (Clear)	
Н	L	Х	X	LOAD $(P_n \rightarrow Q_n)$	
Н	Н	Н	Н	COUNT (Increment)	
Н	Н	L	X	NO CHANGE (Hold)	
Н	Н	X	L	NO CHANGE (Hold)	

*For the LS162A and LS163A only.

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
I _{OH}	Output Current — High	54, 74			-0.4	mA
I _{OL}	Output Current — Low	54 74			4.0 8.0	mA

LS160A and LS161A

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage	54			0.7		Guaranteed Input LOW Voltage for	
VIL.	Input LOW Voltage	74			8.0	V	All Inputs	
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54	2.5	3.5		V	$V_{CC} = MIN$, $I_{OH} = MAX$, $V_{IN} = V_{IH}$	
VOH	Output File File Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table	
	Output LOW Voltage	54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN},$	
V _{OL}		74		0.35	0.5	V	$I_{OL} = 8.0 \text{ mA}$ $V_{IN} = V_{IL} \text{ or } V_{IH}$ per Truth Table	
	Input HIGH Current MR, Data, CEP, Clock			20	μA	V _{CC} = MAX, V _{IN} = 2.7 V		
I _{IH}	PE, CET			40		VCC - 100 00, VIN - 2.1		
	MR, Data, CEP, Clock PE, CET		5	0.1 0.2	mA	$V_{CC} = MAX$, $V_{IN} = 7.0 V$		
L	Input LOW Current MR, Data, CEP, Clock			10	-0.4	mA	VMAY V0.4 V	
I _{IL}	PE, CET	OVX		-0.4	IIIA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
I _{OS}	Short Circuit Current (Note 1		-20		-100	mA	V _{CC} = MAX	
	Power Supply Current				0.1			
I _{CC}	Total, Output HIGH Total, Output LOW			31 32	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

LS162A and LS163A
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

	Limits							
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Inpu All Inputs	t HIGH Voltage for	
V	Input LOW Voltage	54			0.7	V	Guaranteed Inpu	t LOW Voltage for
V_{IL}	Input LOW Voltage	74			0.8	V	All Inputs	
V _{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA
V	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} =	= MAX, V _{IN} = V _{IH}
V _{OH}	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth T	āble
.,	Output LOW Voltage	54, 74		0.25	0.4	V	V	$V_{CC} = V_{CC} \text{ MIN},$ $V_{IN} = V_{IL} \text{ or } V_{IH}$ per Truth Table
V_{OL}		74		0.35	0.5	V		
I _{IH}	Input HIGH Current Data, CEP, Clock PE, CET, SR			20 40	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V	
	Data, CEP, Clock PE, CET, SR			0.1 0.2	mA	V _{CC} = MAX, V _{IN}	= 7.0 V	
I _{IL}	Input LOW Current Data, CEP, Clock, PE, SR CET				-0.4 -0.8	mA	V _{CC} = MAX, V _{IN}	= 0.4 V
I _{OS}	Short Circuit Current (Note	-20		-100	mA	V _{CC} = MAX	·	
Icc	Power Supply Current Total, Output HIGH Total, Output LOW				31 32	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C)

			Limits	2	0,	
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	Maximum Clock Frequency	25	32		MHz	
t _{PLH} t _{PHL}	Propagation Delay Clock to TC	0	20 18	35 35	ns	
t _{PLH} t _{PHL}	Propagation Delay Clock to Q		13 18	24 27	ns	V_{CC} = 5.0 V C_L = 15 pF
t _{PLH} t _{PHL}	Propagation Delay CET to TC		9.0 9.0	14 14	ns	
t _{PHL}	MR or SR to Q		20	28	ns	

AC SETUP REQUIREMENTS (T_A = 25°C)

	Q		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W CP	Clock Pulse Width Low	25			ns	
t _W	MR or SR Pulse Width	20			ns	
t _s	Setup Time, other*	20			ns	
ts	Setup Time PE or SR	25			ns	V _{CC} = 5.0 V
t _h	Hold Time, data	3			ns	
t _h	Hold Time, other	0			ns	
t _{rec}	Recovery Time MR to CP	15			ns	

*CEP, CET, or DATA

DEFINITION OF TERMS

SETUP TIME (t_s) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued

recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

RECOVERY TIME (t_{rec}) — is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

AC WAVEFORMS

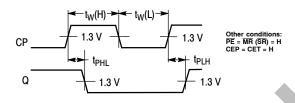


Figure 1. Clock to Output Delays, Count Frequency, and Clock Pulse Width

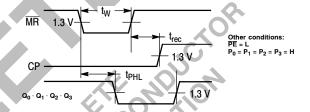


Figure 2. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

AC WAVEFORMS (continued)

COUNT ENABLE TRICKLE INPUT TO TERMINAL COUNT OUTPUT DELAYS

The positive TC pulse occurs when the outputs are in the $(Q_0 \bullet \overline{\mathbb{Q}}_1 \bullet \overline{\mathbb{Q}}_2 \bullet \overline{\mathbb{Q}}_3)$ state for the LS160 and LS162 and the $(Q_0 \bullet \overline{\mathbb{Q}}_1 \bullet \overline{\mathbb{Q}}_2 \bullet \overline{\mathbb{Q}}_3)$ state for the LS161 and LS163.

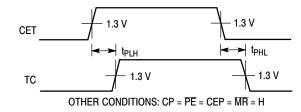


Figure 3

CLOCK TO TERMINAL COUNT DELAYS

The positive TC pulse is coincident with the output state $(Q_0 \bullet \overline{\mathbb{Q}}_1 \bullet \overline{\mathbb{Q}}_2 \bullet \overline{\mathbb{Q}}_3)$ state for the LS161 and LS163 and $(Q_0 \bullet \overline{\mathbb{Q}}_1 \bullet \overline{\mathbb{Q}}_2 \bullet \overline{\mathbb{Q}}_3)$ for the LS161 and LS163.

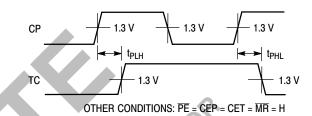


Figure 4

SETUP TIME (t_s) AND HOLD TIME (t_h) FOR PARALLEL DATA INPUTS

The shaded areas indicate when the input is permitted to change for predictable output performance.

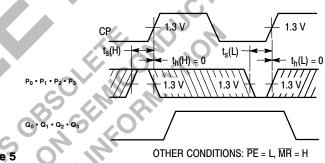


Figure 5

SETUP TIME (t_s) AND HOLD TIME (t_h) FOR COUNT ENABLE (CEP) AND (CET) AND PARALLEL ENABLE (PE) INPUTS

The shaded areas indicate when the input is permitted to change for predictable output performance.

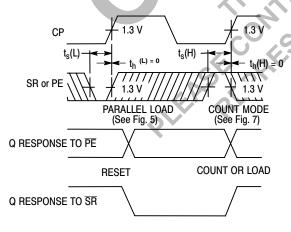


Figure 6

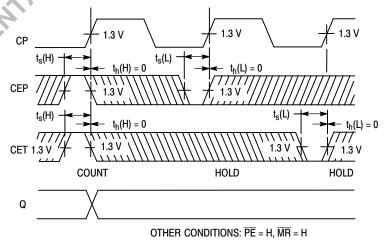


Figure 7

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative