
Solid State Devices, Inc. 14701 Firestone Blvd * La Mirada, CA 90638	SFT6678 SERIES 15 AMPS 400 Volts NPN High Speed Power Transistor					
Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com DESIGNER'S DATA SHEET Part Number / Ordering Information ^{1/} SFT6678 M _ TX						
TX = TX Level TXV = TXV Level S = S Level Lead Bend $\frac{3'}{}$ = Straight Leads UB = Up Bend DB = Down Bend Package M = TO-254 Z = TO-254Z /3 = TO-3	 Application Notes: Replaces Industry Standard 2N6678 Designed for High Voltage, High Speed, Power Switching Applications Such as: Off-Line Supplies Converter Circuits Pulse Width Modulated Regulators Motor Controls Deflection Circuits 					
Maximum Ratings		Symbol	Value	Units		
Collector – Emitter Voltage		V _{CEO}	400	Volts		

Collector – Emitter Voltage	V _{CEO}	400	Volts	
Collector – Base Voltage	V _{CBO}	650	Volts	
Emitter – Base Voltage	V _{EBO}	8.0	Volts	
Continuous Collector Current	lc	15	Amps	
Continuous Base Current	IB	5.0	Amps	
Operating and Storage Temperature	T _J , T _{STG}	-65 to +200	°C	
Total Power Dissipation @ T _c =25°C @ T _A =25°C	PD	175 6.0	W W	
Maximum Thermal Resistance (Junction to Case) (Ambient to Case)	R _{€JC} R _{€JA}	1.0 29.17	°C/W	

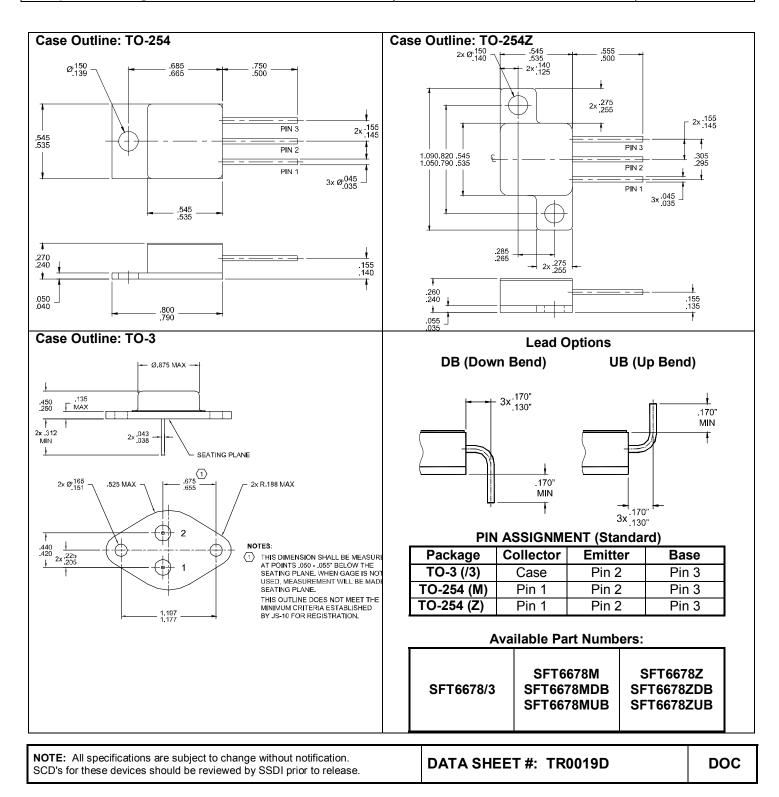
NOTES:

- * Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle $\leq 2\%$ For ordering information, price, and availability contact factory. <u>1</u>/
- <u>2</u>/ <u>3</u>/ Screening based on MIL-PRF-19500. Screening flows available on request.
- Up and down bend configurations available for M and Z (TO-254 and TO-254Z) packages only.
- <u>4</u>/ All electrical characteristics @ 25°C, unless otherwise specified.

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.	DATA SHEET #: TR0019D	DOC
--	-----------------------	-----

Solid State Devices, Inc. 14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SFT6678 SERIES


Electrical Charac	www.ssdi-power.com cteristics		Sym	bol	Min	Max	Units
Collector Cutoff C V_{CE} = 400V, V_{BE} (off) V_{CE} = 650V, V_{BE} (off) V_{CE} = 650V, V_{BE} (off)	r Cutoff Current $T_c = 25^{\circ}$ VV, $V_{BE}(off) = 1.5V$ $T_c = 25^{\circ}$ VV, $V_{BE}(off) = 1.5V$ $T_c = 25^{\circ}$		I _{CEV}		-	0.5 1.0 50	μΑ μΑ μΑ
Collector – Base L	eakage Current V _{CB} =	650V	I _{CE}	30	-	1	mA
Emitter Cutoff Cur	rrent (V _{EB} = 8V, I	_c = 0)	I _{EE}	30	-	2	mA
Collector-Emitter $(I_c = 200 \text{mA}, I_B = 0)$	Sustaining Voltage		V _{CEC})(sus)	400	-	V
DC Current Gain*	$V_{CE} = 3V, 1_{C} = 15A, T_{A} = V_{CE} = 3V, 1_{C} = 1A, T_{A} = V_{CE} = 3V, 1_{C} = 15A, T_{A} = V_{CE} = 3V, 1_{C} = 15A, T_{A} = V_{CE} = 3V, 1_{C} = 15A, T_{A} = V_{CE} = 3V, T_{C} = 15A, T_{$	25°C	H _F H _F	E2	8 15 4	20 40 -	
Base-Emitter Satu $(I_C = 15A, I_B = 3A)$	ration Voltage*		V _{ве} (\$	SAT)	-	1.5	V
Collector-Emitter $(I_C = 15A, I_B = 3A)$	Saturation Voltage* $(T_c = 2)$ $(T_c = 12)$	25°C) 25°C)	V _{ce} (SAT)	-	1.0 2.0	V
Current Gain (I _c = 1A, V _{cE} = 10V, f = 5MHz)			h _{FE}		3	10	
Output Capacitan (V _{CB} = 10V,f = 0.1			C	ob	150	500	pF
Delay Time	$(V_{CC} = 200V, I_{C} = 15A, I_{B1} = I_{B2} = 3A, t_{P} = 50 \ \mu\text{sec, Du}$ $Cycle \le 2\%, V_{B} = 6V, R_{L} = 13.5\Omega)$ $V_{CC} = 200V$ $V_{CC} = 200V$ $V_$	uty	t _(on)	t _d	-	0.1	µsec
Rise Time	OUTPUT WAVEFORM $t_{d} \rightarrow t_{d}$ $t_{d} \rightarrow t_{r}$ TIME TEST CIRCUIT			t _r	-	2.5	
Storage Time	20µs ≤ PW ≤ 100µs INPUT ≈16V WAVEFORM 0V SEE NOTE 1 ≈2V VCC = 200V 13.5Ω FULSE IN 5Ω SEE NOTE 2 IN 916		t _(off)	t _s	-	0.6	
Fall Time	OUTPUT WAVEFORM $\downarrow \downarrow $		(01)	t _f	-	0.5	
Cross Over Time	$(I_{C} = 15 \text{ A}(\text{pk}), \text{ V}_{\text{CLAMP}} = 450\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{BE(off)}} = 6\text{V})$ $V_{\text{CC}} = 450\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{BE(off)}} = 6\text{V})$ $V_{\text{CC}} = 4200\text{V}$ $V_{\text{CC}} = 4200\text{V}$ $V_{\text{CLAMP}} = 450\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{BE(off)}} = 6\text{V})$ $V_{\text{CC}} = 4200\text{V}$ $V_{\text{CLAMP}} = 4500\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{BE(off)}} = 6\text{V})$ $V_{\text{CC}} = 4200\text{V}$ $V_{\text{CLAMP}} = 4500\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{BE(off)}} = 6\text{V})$ $V_{\text{CC}} = 4200\text{V}$ $V_{\text{CLAMP}} = 4500\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{B1}} = 600\text{V}$ $V_{\text{CC}} = 400\text{V}$ $V_{\text{CLAMP}} = 4500\text{V}, \text{ I}_{\text{B1}} = 3 \text{ A}, \text{ V}_{\text{B1}} = 300\text{V}$ $V_{\text{CL}} = 400\text{V}$ $V_{\text{CL} = 400\text{V}$ $V_{\text{CL}} = 400\text{V}$ V_{CL}		ť	C	-	0.5	µsec
NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.					DOC		

SSD

Solid State Devices, Inc. 14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SFT6678 SERIES

Safe Operating Area, DC	V _{CE} = 11.7 V, I _C = 15 A, 1 sec
	V _{CE} = 30 V, I _C = 5.9 A, 1 sec
	V _{CE} = 100 V, I _C = 0.25 A, 1 sec
	V _{CE} = 400 V, I _C = 10 mA, 1 sec
Safe Operating Area,	V _{CC} = 15 V, V _{BB2} = 5 V, R _{BB1} = 5 Ω, R _{BB2} = 1.5Ω, L = 50μH,
clamped switching	$V_{clamp} = 450V, I_{C} = 15 A$

