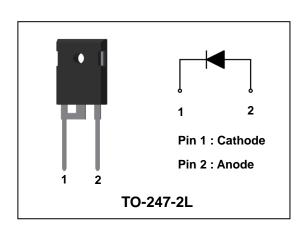


Ultrafast Recovery Rectifier


600V, 60A ULTRAFAST RECTIFIER

Features

- Low forward voltage drop and leakage current
- · Soft recovery time
- Fast recovery
- · Low power loss and high efficiency
- Full lead (Pb)-free and RoHS compliant device

Applications

- Switch mode power supply (SMPS)
- Uninterruptible power supplies (UPS)
- Free-wheeling diode
- Snubber diode

Product Characteristics

I _{F(AV)}	60A
V _{RRM}	600V
V _{FM} at 150 ℃	1.6V
t _{rr} (Typ.)	35ns

Ordering Information

Device	Marking Code	Package	Packaging
SFN60W600W2	SFN60W600	TO-247-2L	Tube

Marking Information

AUK = Manufacture Logo

= Management Code

 Δ = Control Code of Manufacture

YMDD = Date Code Marking

-. Y = Year Code

-. M = Month Code

-. DD = Daily Code

SFN60W600 = Specific Device Code

KSD-D0X005-000 1

Absolute Maximum Ratings (Limiting Values)

Characteristic	Symbol	Value	Unit
Maximum repetitive reverse voltage Maximum working peak reverse voltage Maximum DC blocking voltage	Vrrm Vrwm Vr	600	V
Maximum average forward rectified current	I _{F(AV)}	60	Α
Peak forward surge current 8.3ms single half sine-wave superimposed on rated load per diode	I _{FSM}	250	А
Power dissipation	P _D	160	W
Storage temperature range	T _{stg}	-55 to +150	°C
Maximum operating junction temperature	TJ	150	

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Maximum thermal resistance junction to case	R _{th(j-c)}	0.78	℃W
Maximum thermal resistance junction to ambient	R _{th(j-a)}	62.5	℃W

Electrical Characteristics

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Dook forward valtage drap	V _{FM} ⁽¹⁾	I 60A	TJ=25℃	-	1.5	2.0	V
Peak forward voltage drop	V FM ('')	I _{FM} = 60A	TJ=150℃	-	-	1.6	V
Reverse leakage current	I _{RM} ⁽²⁾	VR = VRRM	TJ=25℃	-	-	10	uA
			TJ=150℃	-	-	800	
Junction capacitance	Сл	V _R = 10V		-	126	-	pF

Note : (1) Pulse test : $t_P \le 380us$, Duty $cycle \le 2\%$

(2) Pulse test : $t_P \le 20$ ms, Duty cycle $\le 2\%$

Dynamic Recovery Characteristics

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
		I _F = 1A, di/dt = -100 A	Vus	-	35	40	
Reverse recovery time	t _{rr}		TJ=25℃	-	100	-	ns
			T _J =125℃	-	125	-	
Davage accesses		I _F = 60A, V _R =200V,	T _J =25 ℃	-	5.8	-	۸
Reverse recovery current	IRRM	di/dt=-200 A/us	T _J =125℃	-	8.8	-	Α
Davaraa raaayanyaharaa	0		TJ=25℃	-	290	-	- C
Reverse recovery charge	Qrr		T _J =125℃	-	550	-	nC

Typical Electrical Characteristic Curves

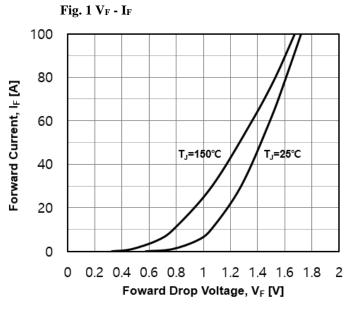


Fig. 2 I_R - V_R 1000 T_J=150°C Reverse Leakage Current, IR [uA] T₁=125°C 100 10 1 T₁=25°C 0.1 0.01 0.001 0 100 200 300 400 500 600 Reverse Voltage, V_R [V]

Fig. 3 Typical Peak Forward Surge Characteristics

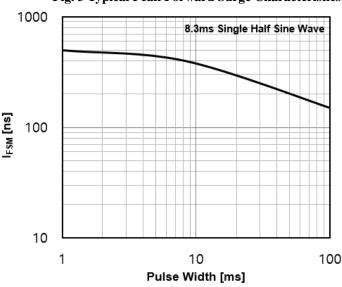


Fig. 4 Average Forward Current Derating

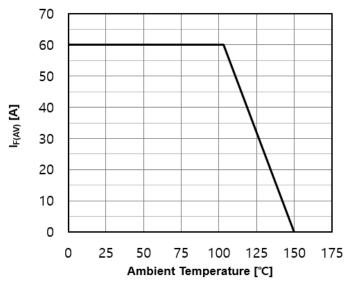


Fig. 5 C_J - V_R

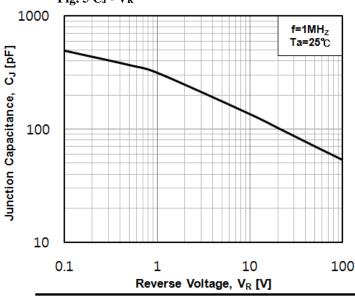
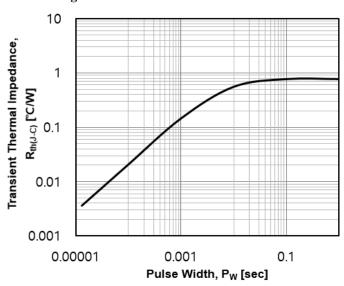
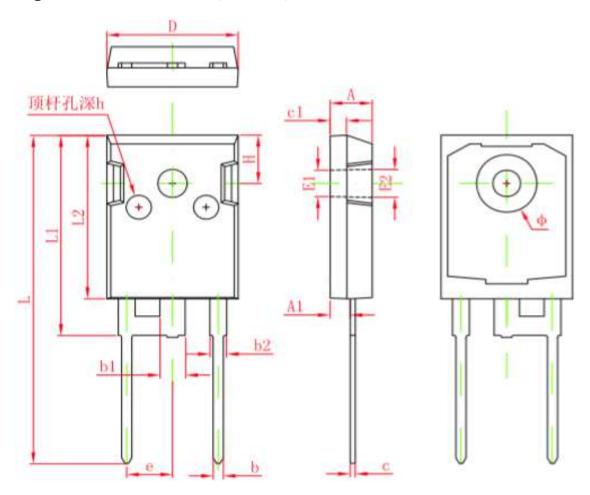




Fig. 6 Transient Thermal Resistance

KSD-D0X005-000 3

Package Outline Dimension (Unit: mm)

Orana la a l	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	4.850	5.150	0.191	0.200	
A1	2.200	2.600	0.087	0.102	
b	1.000	1.400	0.039	0.055	
b1	2.800	3.200	0.110	0.126	
b2	1.800	2.200	0.071	0.087	
С	0.500	0.700	0.020	0.028	
c1	1.900	2.100	0.075	0.083	
D	15.450	15.750	0.608	0.620	
E1	3.500 REF		0.138 REF		
E2	3.600 REF		0.142 REF		
L	40.900	41.300	1.610	1.626	
L1	24.800	25.100	0.976	0.988	
L2	20.300	20.600	0.799	0.811	
Ф	7.100	7.300	0.280	0.287	
е	5.450 TYP		0.215 TYP		
Н	5.980 REF		0.235 REF		
h	0.000	0.300	0.000	0.012	

KSD-D0X005-000

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.