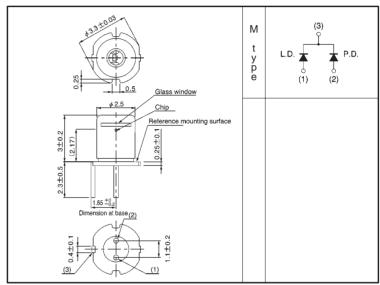
AlGaAs laser diode in very compact package RLD-78MAT4S


The RLD-78MAT4S is a laser diode housed in ROHM's custom small 3.3 mm package. Using a laser chip with a low operating current, this device is ideal for pickups in thin, portable CD players and CD-ROM drives.

●Applications Thin CD players, CD-ROM CD players in cars

Features

- Compact package for thin CD and CD-ROM.
- 2) Low current consumption suitable for portable applications.
- High operating temperature suitable for notebook computers and car applications.

External dimensions (Units: mm)

■Absolute maximum ratings (Tc = 25°C)

Parameter		Symbol	Limits	Unit
Output		Po	4	mW
Reverse voltage	Laser	V _R	2	V
	PIN photodiode	V _R (PIN)	30	٧
Operating temperature		Topr	−10∼+75	°C
Storage temperature		Tstg	-40~ + 85	°C

Laser diodes RLD-78MAT4S

●Electrical and optical characteristics (Tc = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Threshold current	Ith	_	20	25	mA	_	
Operating current	lop	_	25	30	mA	Po=2.5mW	
Operating voltage	Vop	_	1.9	2.3	٧	Po=2.5mW	
Differential efficiency	η	0.3	0.5	1.0	mW/mA	2mW I(3mW)—I(1mW)	
Monitor current	lm	0.04	0.09	0.25	mA	Po=2.5mW,VR(PIN)=15V	
Parallel divergence angle	θ //*	8	11	15	deg	Po=2.5mW	
Perpendicular divergence angle	θ ⊥*	20	37	45	deg		
Parallel deviation angle	Δθ//	_	_	±3	deg		
Perpendicular deviation angle	Δθ⊥	_	_	±3	deg		
Emission point accuracy	ΔX ΔΥ ΔΖ	_	_	±80	μm	_	
Peak emission wavelength	λ	770	785	810	nm	Po=2.5mW	
Signal-to-noise ratio	S/N	60	_	_	dB	f=720kHz, Δf=10kHz	

^{*} θ // and θ \perp are defined as the angle within which the intensity is 50% of the peak value.

Electrical and optical characteristic curves

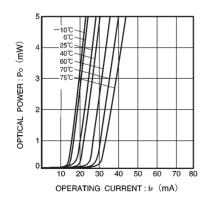


Fig. 1 Optical output vs. operating current

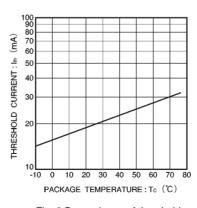


Fig. 2 Dependence of threshold current on temperature

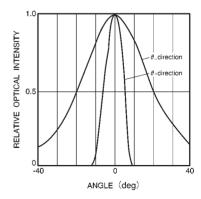


Fig. 3 Far field pattern

Laser diodes RLD-78MAT4S

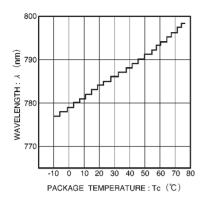


Fig. 4 Dependence of wavelength on temperature

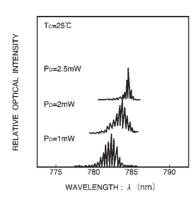


Fig. 5 Dependence of emission spectrum on optical output

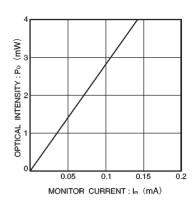


Fig. 6 Monitor current vs. optical output

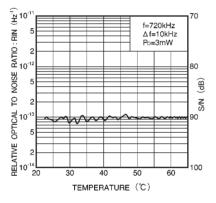


Fig. 7 Temperature dependence of noise

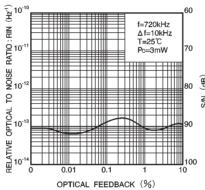


Fig. 8 Dependence of noise on optical feedback