Typical Applications

-3V CDMA/FM Cellular Systems

- 3V CDMA PCS Systems
-3V TDMA Cellular/PCS Systems
- Supports Dual-Mode AMPS/CDMA
- Supports Dual-Mode TACS/CDMA
- Portable Battery-Powered Equipment

Product Description

The RF2629 is a complete AGC amplifier designed for the transmit section of 3 V dual-mode CDMA/FM cellular and PCS applications. It is designed to amplify IF signals while providing more than 84 dB of gain control range. Noise Figure, IP3, and other specifications are designed for CDMA and dual mode CDMA/AMPS handsets. This circuit is designed as part of the RFMD CDMA Chip Set, consisting of this Transmit IF AGC Amp, a Transmit Upconverter, a Receive LNA/Mixer, and a Receive IF AGC Amp. The IC is manufactured on an advanced high frequency Silicon Bipolar process and is packaged in a standard miniature 8-lead plastic MSOP package.

Optimum Technology Matching ${ }^{\circledR}$ Applied \square Si BJT $\quad \square$ GaAs HBT $\quad \square$ GaAs MESFETSi Bi-CMOSSiGe HBTSi CMOS

Functional Block Diagram

Package Style: MSOP-8

Features

- Supports Dual Mode Operation
- Supports PCS and Cellular Applications
- Single 3V Power Supply
- 12 MHz to 175 MHz Operation
- Miniature Surface Mount Package

Ordering Information

RF2629	3V CDMA/FM Transmit AGC Amplifier
RF2629 PCBA	Fully Assembled Evaluation Board

RF2629

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.0	$\mathrm{~V}_{\mathrm{DC}}$
Control Voltage	-0.5 to +5.0	V
Input Power Levels	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\mathrm{T}=25^{\circ} \mathrm{C}, 130 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \text { Pin }=-40 \mathrm{dBm},$ $Z_{S}=1 \mathrm{k} \Omega, Z_{L}=1 \mathrm{k} \Omega, 1 \mathrm{k} \Omega$ External Output Terminating Resistor (Effective $Z_{L}=500 \Omega$) (See Application Example)
Frequency Range		12 to 175		MHz	
Maximum Gain	+35	+38		dB	$\mathrm{V}_{\mathrm{GC}}=2.3 \mathrm{~V}$
Minimum Gain		-48	-45	dB	$\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}$
Gain Slope		57		dB/V	Measured in 0.5 V increments
Gain Control Voltage Range		0 to 2.4		V_{DC}	
Gain Control Input Impedance		30		$\mathrm{k} \Omega$	
Noise Figure		10.5	13	dB	At maximum gain and 130 MHz
Input IP3	-26	-25		dBm	$A t+10 \mathrm{~dB}$ gain and referenced to $1 \mathrm{k} \Omega$, $\mathrm{Pin}=-45 \mathrm{dBm}$ per tone
	-28	-26		dBm	At +35 dB gain and referenced to $1 \mathrm{k} \Omega$, $\mathrm{Pin}=-45 \mathrm{dBm}$ per tone
Input Impedance		1		$\mathrm{k} \Omega$	Differential
Stability (Max VSWR)	10:1				Spurious $<-70 \mathrm{dBm}$
Power Supply					
Voltage		2.7 to 3.3		V	
Current Consumption		23	25	mA	Maximum gain, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
Current Consumption		22	24	mA	Minimum gain, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

| Pin | Function | Description | Interface Schematic |
| :---: | :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | IN+ | Balanced input pin. This pin is internally DC-biased and should be DC
 blocked if connected to a device with a DC level, other than $V_{C C}$,
 present. A DC to connection to $V_{C C}$ is acceptable. For single-ended
 input operation, one pin is used as an input and the other input is AC-
 coupled to ground. The balanced input impedance is $1 \mathrm{k} \Omega$, while the
 single-ended input impedance is 500Ω. | |
| $\mathbf{2}$ | IN- | Same as pin 2, except complementary input. | |

RF2629

Application Schematic

Evaluation Board Schematic

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout Board Size 2.750" x 2.000"

Board Thickness 0.031", FR-4

RF2629

