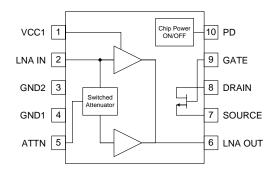

900MHZ 3V LOW CURRENT LNA/MIXER

Typical Applications

- UHF Digital and Analog Receivers
- Digital Communication Systems
- Spread-Spectrum Communication Systems
 General Purpose Frequency Conversion
- Commercial and Consumer Systems
- Portable Battery-Powered Equipment


Product Description

The RF2495 is a front-end receiver IC chip developed for the handset/portable battery-powered equipment markets. The chip contains an RF 15dB attenuator, an LNA and a passive mixer. By using a state-of-the-art Silicon Bi-CMOS process, the LNA has high dynamic range under low DC operating conditions and the passive mixer requires no DC bias at all. Packaged in the industry-standard MSOP-10 package, the device is well-suited for limited board space applications.

Optimum Technology Matching® Applied

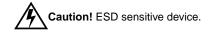
🗌 Si BJT	GaAs HBT	GaAs MESFET
Si Bi-CMOS	SiGe HBT	Si CMOS
InGaP/HBT	🗌 GaN HEMT	🗹 SiGe Bi-CMOS

Functional Block Diagram

Package Style: MSOP-10

Features

- Single Supply 3V Operation
- 1.9dB LNA NF
- 0dBm Input IP3
- Small MSOP-10 Package
- Low Current Drain (11mA maximum)
- Very Low Cost

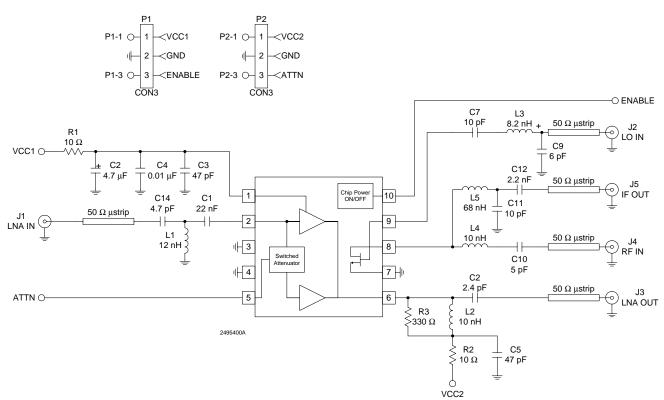

Ordering Information

RF2495 900MHz 3V Low Current LNA/Mixer RF2495 PCBA Fully Assembled Evaluation Board

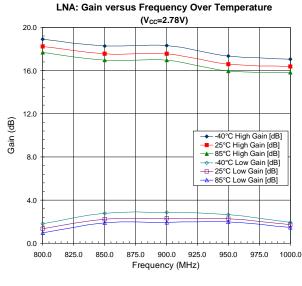
RF Micro Devices, Inc. Tel (336) 664 1233 7628 Thorndike Road Fax (336) 664 0454 Greensboro, NC 27409, USA http://www.rfmd.com

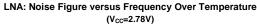
Absolute Maximum Ratings

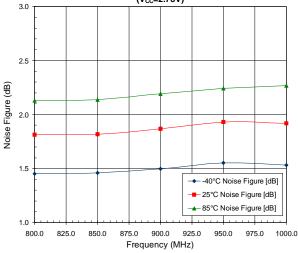
Parameter	Rating	Unit
Supply Voltage	-0.5 to +3.6	V _{DC}
Input RF Level	+10	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

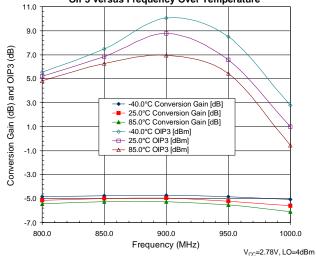

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification		Unit	Condition		
Farameter	Min.	Min. Typ. Max.		Unit	Condition	
Overall					T=25°C, V _{CC} =3.0V	
RF/LO Frequency Range		850 to 940		MHz	Specifications	
		800 to 1000		MHz	Usable range	
LNA						
Gain	15.5	17.0		dB	High gain state	
	1.0	4.0		dB	Low gain state	
Input IP3	-2.5	+1.0		dBm	High gain state, RF IN=-25dBm	
	+11.0	+12.5		dBm	Low gain state, RF IN=-15dBm	
Noise Figure		1.9	2.2	dB	High gain state	
		13.5		dB	Low gain state	
Input VSWR			1.67:1			
Output VSWR			1.67:1			
Mixer						
Conversion Gain	-6.5	-5.5		dB	With LO=+2dBm	
	-6.0	-5.5		dB	With LO=+4dBm	
Input IP3	+7.5	+11.0		dBm	With LO=+2dBm	
	+10.0 -2	+13.0		dBm	With LO=+4dBm	
LO Input Level Attenuation	-2	4.0		dBm		
ATTN Enable	V 0.2	>1.6		V		
	V _{CC} -0.3	-		-	Low gain state	
ATTN Disable		0	0.3	V	High gain state	
Power Down	N/ 0.0	4.0			Valle as any light to DD gin	
Chip Enable	V _{CC} -0.3	>1.6		V	Voltage applied to PD pin	
Chip Disable		0		V	Voltage applied to PD pin	
Power Supply						
Voltage		3.0		V	Specifications	
		2.7 to 3.3	10	V	Operating limits	
Current Consumption		10	12	mA	Chip enabled	
		<1	3.0	uA	Chip disabled	


Pin	Function	Description	Interface Schematic
1	VCC1	Supply voltage for the LNA, bias circuits, and control logic. External RF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
2	LNA_IN	RF Input pin. This pin is internally matched for optimum noise figure from a 50Ω source. This pin is internally DC-biased and, if connected to a device with DC present, should be blocked with a capacitor suitable for the frequency of operation.	
3	GND2	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
4	GND1	Ground connection for the LNA circuits. For best performance, keep traces physically short and connect immediately to ground plane.	See pin 2.
5	ATTN	Attenuation pin. A logic high reduces LNA gain by 15dB.	
6	LNA OUT	LNA Output pin. This pin requires a connection to V_{CC} through an inductor.	
7	SOURCE	Connection to source of MOSFET transistor used as mixer. Drain and source are symmetric.	
8	DRAIN	Connection to drain of MOSFET transistor used as mixer.	See pin 7.
9	GATE	Connection to gate of MOSFET transistor used as mixer. Internally DC-biased. Use DC-blocking capacitor.	See pin 7.
10	PD	Power control. A logic "low" turns the part off. A logic "high" (>1.6V) turns the part on.	V _{cc}
	ESD	This diode structure is used to provide electrostatic discharge protec- tion to 3kV using the Human body model. The following pins are pro- tected: 1, 3, 5, 9, 10.	


Evaluation Board Schematic


(Download Bill of Materials from www.rfmd.com.)


RF2495 Evaluation Board Layout Board Size 1.108" x 1.281" Board Thickness 0.031", Board Material FR-4 RF <u>mecro-</u> . 5 toon EUICES ONS элемыз GND ₽<u>2</u> 8 VCC2 8 -<u>8</u> ដ

