
PI5C3401

6-Bit, 3-Port Bus **Exchange Switch**

Product Features:

- Nero propagation delay
- 5Ω switches connect inputs to outputs •
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power (0.2µA Typical) - Ideally suited for notebook applications
- Packages available:
 - 24-pin 300 mil wide plastic DIP (P)
 - 24-pin 150 mil wide plastic QSOP (Q)
 - 24-pin 300 mil wide plastic SOIC (S)

Logic Block Diagram

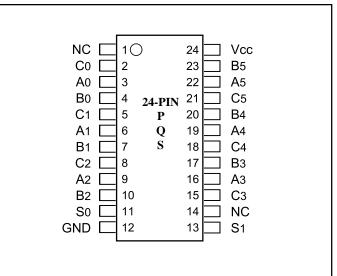
Truth Table⁽¹⁾

Function	S0	S1	A0-5	B0–5	C0–5
Disconnect	Н	Н	Hi-Z	Hi-Z	Hi-Z
Connect A-B	L	L	B0–5	A0-5	Hi-Z
Connect B-C	Н	L	Hi-Z	C0–5	B0–5
Connect C-A	L	Н	C0–5	Hi-Z	A0-5

Note:

= High Voltage Level 1. H

=Low Voltage Level L


Hi-Z = High Impedance

Product Description:

Pioneer Semiconductor's PI5C series of logic circuits are pro-duced in the Company's advanced 0.8 micron CMOS technology, achieving industry leading performance.

The PI5C3401 is a 6-bit, 3-port bus exchange switch designed with a low ON resistance (5 Ω) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. The switches are turned OFF by S0 = H and S1 = H. The A bus can be connected to B bus by SO = L and SI = L. The B bus can be connected to C bus by SO = H and S1 = L. The C bus can be connected to A bus by S0 = L and S1 = H.

Product Pin Configuration

Product Pin Description

Pin Name	Description
S0, S1	BusDirection
A0-5	Bus A
B0–5	Bus B
C0–5	Bus C
NC	No Connect
GND	Ground
Vcc	Power

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & Vcc Only) . $-0.5V$ to $+7.0V$
Supply Voltage to Ground Potential (Outputs & D/O Only)-0.5V to +7.0V
DC Input Voltage –0.5V to +7.0V
DC Output Current 120 mA
Power Dissipation 0.5W

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Note:

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5V \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
VIH	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
Ін	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	μA
IIL	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μA
Іодн	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	μA
Vik	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$		-0.7	-1.2	V
Ios	Short Circuit Current ⁽³⁾	A(B) = 0V, B(A) = Vcc	100			mA
VH	Input Hysteresis at Control Pins			150		mV
Ron	Switch On Resistance ⁽⁴⁾	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48 \text{ mA} \\ V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15 \text{ mA}$		5 10	7 15	Ω

Capacitance ($T_A = 25^{\circ}C, f = 1 \text{ MHz}$)

Parameters ⁽⁵⁾	Description	Test Conditions	Тур	Max.	Units
Cin	Input Capacitance	VIN=0V		6	pF
Coff	A/B Capacitance, Switch Off	$V_{IN} = 0V$		6	pF
Con	A/B Capacitance, Switch On	$V_{IN} = 0V$		8	pF

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, T_A = 25° C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.
- 5. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
Icc	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND \text{ or } V_{CC}$		0.1	3.0	μΑ
ΔΙcc	Supply Current per Input @ TTL HIGH	Vcc = Max.	$V_{IN} = 3.4 V^{(3)}$			2.5	mA
Ісср	Supply Current per Input per MHz ⁽⁴⁾	Vcc=Max., A and B Pins Open BE=GND Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input (VIN = 3.4V, control inputs only); A and B pins do not contribute to Icc.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

			PI5C3401		_
			Com.		
Parameters	Description	Conditions ⁽¹⁾	Min.	Max.	Unit
t PLH	Propagation Delay ^(2,3)	$C\mathrm{L}=50\;pF$		0.25	ns
t PHL	Ax to Bx, Bx to Cx	$R_{\rm L}=500\Omega$			
	or Cx to Ax				
ts	Bus Direction Time		1.5	6.5	ns
	Sx to Ax or Bx or Cx				

Notes:

- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.