High-Efficiency Inverter Controller

FEATURES

- Single-stage power conversion, requiring only a +5 V voltage source
- Reduces the number of components and board size by 30% compared with conventional design
- Supports both floating and grounded secondary designs
- 90% efficiency vs. typical 75% efficiency of conventional designs
- Internal open-lamp and short-circuit protections
- Wide dimming range
- Supports multiple CCFLs
- Simple and reliable 2-winding transformer design
- Eliminates leakage current when used in a floating secondary design
- Constant-frequency design eliminates interference with LCDs

ORDERING INFORMATION

OZ965G-16-pin plastic SOP
OZ965R - 16-pin plastic TSSOP
OZ965IG - 16-pin plastic SOP
OZ965IR-16-pin plastic TSSOP

GENERAL DESCRIPTION

The OZ965 is a single chip, high-efficiency, Cold Cathode Fluorescent Lamp (CCFL) backlight inverter controller whose primary function is to convert +5 volt DC power to approximately 600 VAC. Additionally, the OZ965 performs the lamp
Figure 1. Typical Application Circuit

FUNCTIONAL BLOCK DIAGRAM

Refer to the functional block diagram in Figure 2, below, and the Pin Description Table on page 3.

Power is transferred to the transformer primary by the N-MOSFET, driven by the MOSFET gate driver out of pin NDR. The P-MOSFET resets the primary field, driven by pin PDR. The usual design results in approximately 50% duty cycle at full lamp intensity. Terminating the NDR signal earlier than the full brightness lamp pulse width performs lamp dimming, using the analog dimming. The voltages on pins HCLMP and LCLMP set a threshold voltage for the ramp comparator setting the maximum duty cycle for NDR.

A pulse generator circuit creates the clock signal with the frequency determined by an external, constant current setting resistor (RT) and timing capacitor (CT).

The "soft-start" circuit ensures a reliable and long lamp life starting condition.
"Soft start" gradually increases the energy delivered to the secondary.

When the OZ965 is enabled at pin ENA, the capacitor on pin SST determines the duration of the "soft-start" period, gradually increasing the NDR pulse width to the regulated brightness. The "soft-start" period provides sufficient time for the lamp to ignite.

For system reliability there are several circuit protections provided. To ensure a controlled output, the secondary current is monitored on pin FB and is compared to a reference voltage on pin ADJ. The NDR signal is shortened or lengthened dependent upon this feedback. Protection is provided by the resultant signal, CMP, monitoring for a lamp removal condition. Short circuit protection is provided at pin SCP. The OPS signal selects either HCLMP or LCLMP providing current protection against an "Open Lamp" condition at start-up. The OPS signal also allows adjustment to different transformer models.

To reduce power dissipation, the switch (MOSFET) drive signals are "break-before-make" with a short, fixed off time between activation of NDR or PDR.

Note:
OVP - Over Voltage Protection SCP - Short-Circuit Protection UVL - Under Voltage Lockout

Figure 2. Functional Block Diagram

PIN DESCRIPTION

Names	Pin No.	I/O	Description
REF	1	O	Reference voltage output. Nominal voltage is 2.5 V.
HCLMP	2	I	Clamping maximum duty cycle under normal operation.
LCLMP	3	I	Clamping maximum duty cycle under open-lamp condition.
SCP	4	I	Short-circuit protection input (V $\left.\mathrm{V}_{\text {TH }}=0.6 \mathrm{~V}\right)$
ADJ	5	I	Reference voltage input for dimming control.
FB	6	I	Current sense feedback.
CMP	7	O	Compensation for the current sense feedback.
GND	8	GND	Ground.
SST	9	I	Soft-start ensures lamp current pulses gradually increases to its normal value
PDR	10	O	Gate drive output for the P-MOSFET.
NDR	11	O	Gate drive output for the $\mathrm{N}-\mathrm{MOSFET}$.
ENA	12	I	Enable input, active high $\left(\mathrm{V}_{\text {TH }}=1.5 \mathrm{~V}\right)$
OPS	13	I	Output current sense $\left(\mathrm{V}_{\text {TH }}=0.6 \mathrm{~V}\right)$
CT	14	I/O	Timing capacitor. CT and RT set the clock frequency.
RT	15	I/O	Timing resistor. Fosc $=1.91 /(\mathrm{Rt} \bullet \mathrm{Ct})$
VDD	16	PWR	Supply voltage input.

ABSOLUTE MAXIMUM RATINGS

VDD		2 GND
Logic inputs		$+/-0.3 \mathrm{~V}$

	OZ965	OZ965I
Operating temp.	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

	OZ965	OZ965I
Power dissipation $-\quad$ 16-pin SOP $-\quad$ 16-pin TSSOP	.720 W	.580 W
Thermal Impedance $-\quad 16-$-pin SOP $-\quad 16-p i n ~ T S S O P ~$	$111^{\circ} \mathrm{C} / \mathrm{W}$	$111^{\circ} \mathrm{C} / \mathrm{W}$
$115^{\circ} \mathrm{C} / \mathrm{W}$	$115^{\circ} \mathrm{C} / \mathrm{W}$	

RECOMMENDED OPERATING RANGE

VDD		$5.0 \mathrm{~V}+/-5 \%$
Fosc	30 KHz to 200 KHz	
Rosc		50 k to 150 k

OZ965
FUNCTIONAL SPECIFICATIONS

Parameter	Symbol	Test Conditions		Limits		Unit
		4.75 V < VDD < 5.25 V	Min	Typ	Max	
Reference Voltage						
Nominal voltage	Vref	$\mathrm{I}_{\text {load }}=0.1 \mathrm{~mA}$,	2.37	2.50	2.63	V
Line regulation			-	6	-	mV / V
Load regulation		$\mathrm{I}_{\text {load }}=0.2 \mathrm{~mA}$ to 1.0 mA	-	1	-	$\mathrm{mV} / \mathrm{mA}$
Oscillator						
Initial accuracy	fosc	$\mathrm{Ct}=470 \mathrm{pF}, \mathrm{Rt}=49.9 \mathrm{k}$		81		KHz
Ramp peak			-	2.54	-	V
Ramp valley			-	0.48	-	V
Temp. stability		TA $=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-	-	200	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Error Amplifier						
Input bias current		ADJ=FB=2.0 V	-	0.25	-	uA
Input offset voltage		$\mathrm{VFB}=4.0 \mathrm{~V}$		5	10	mV
Input voltage range			0	-	$\begin{gathered} \text { VDD- } \\ 1.5 \end{gathered}$	V
Open loop voltage gain			-	65	-	dB
Unity gain bandwidth			-	1.5	-	MHz
Power supply rejection			-	60	-	dB
Under-Voltage Lockout						
Positive-going threshold voltage			See Table 1, page 5			
Negative-going threshold voltage			See Table 1, page 5			
Supply						
Supply current - Enable Low	Ioff		-	195	-	$\mu \mathrm{A}$
Supply current - Enable High	Ion	$\mathrm{VDD}=5.0 \mathrm{~V}$	-	1.0	-	mA
NDR output						
Output high voltage	V_{OH}	Isource $=10 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V}$	-	4.75	-	V
Output low voltage	VoL	Isink $=10 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V}$	-	0.25	0.5	V
Output resistance	Rout		-	10	-	Ω
PDR output						
Output high voltage	$\mathrm{V}_{\text {OH }}$	Isource $=10 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V}$	-	4.7	-	V
Output low voltage	V_{OL}	Isink $=10 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V}$	-	0.5	-	V
Output resistance	Rout		-	15	-	Ω
Break-Before-Make						
Qn off to Qp on delay	T_{HL}		-	250	-	ns
Qp off to Qn on delay	$\mathrm{T}_{\text {LH }}$		-	220	-	Ns
High Clamp						
Duty cycle of NDR	HCLMP	OPS $=1 \mathrm{~V} \mathrm{~V}_{\text {HCLMP }}=0 \mathrm{~V}$	92	94	96	\%
		$\mathrm{OPS}=1 \mathrm{~V}, \mathrm{~V}_{\text {HCLMP }}=1.8 \mathrm{~V}$	-	14	-	
Low Clamp						
Duty cycle of NDR	LCLMP	OPS $=0 \mathrm{~V}, \mathrm{~V}_{\text {LCLMP }}=0 \mathrm{~V}$	92	94	96	\%
		$\mathrm{OPS}=0 \mathrm{~V}, \mathrm{~V}_{\text {LCLMP }}=1.8 \mathrm{~V}$	-	14	-	
Max. / Min. Duty cycle						
Duty cycle of NDR			6	-	95	\%

Table 1. Under-Voltage Lockout for OZ965 and OZ965I

PACKAGE INFORMATION

