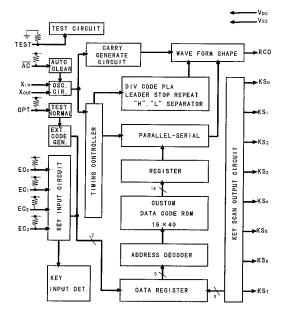


PRELIMINARY

REMOTE CONTROL COMMANDER IC

GENERAL DESCRIPTION

The NJU6014 is a remote control commander IC, and generates the control code according to the key input of 4 x 8 matrix. It contains auto clear circuit, carrier generator, key input / key scan output circuit, extension code generator, data ROM and operated single power supply.


The NJU6014 has the stand-by mode using auto clear function with external capacitance.

The transmission code is using a Pulse Position Modulation (PPM) method and its transmission by the IR-LED. Maximum 40 - pattern output is available by programming the PLA and custom code ROM.

FEATURES

- Transmission Code --- Pulse Position Modulation
- Generating Pattern --- Fixed by PLA and ROM
- Frame Number Setting --- 1 to 8 frame
- Internal Oscillation Circuit
- Power On Initialization
- Stand-by Mode .-- 1 µ A Max.
- Low Power Consumption •
- Low Operating Voltage -- 1.1 ~ 1.8V
- -- SSOP 20 / SOP 20 / SDIP 22 Package Outline
- C-MOS Technology

BLOCK DIAGRAM

PACKAGE OUTLINE

NJU6014G

NJU6014V


NJU6014L

PIN CONFIGURATION

Vss		20	_ V₀₀
TEST	2	19	RCO
AC	3	18	∏ KS₀
$X_{\rm IN}$	4	17	KS1
Xour	5	16	∐ KS₂
OPT	6	15] KS₃
ЕCo		14	_] KS₁
ECι	5	13	_ KS₅
EC2	9	12	∏ KS₀
EC3	10	11	KS7

	h	-		
C		3	18	_ KS₀
IN		4	17	<u> </u>
our		5	16	🗋 KS:
ΡT		6	15	<u> </u>
Co		7	14	κs.
Сι		8	13	🗌 KS
C2		9	12	🗋 KS
C3		10	п	□ KS:

K.U6014L

TERMINAL DESCRIPTION

N	0.		FUNCTION
NJU6014G/V	NJU6014L	SYMBOL	FUNCTION
1	1	Vss	GND
2	2	TEST	Testing Terminal (Normally OPEN, Internal Pull-down Resistance)
3	3	ĀC	Auto Clear Terminal(Internal Pull-up Resistance) Power on initialization is executed by connecting a capacitance to this.
4, 5	4, 5	XIN, XOUT	Oscillation Inverter Input / Output Terminal (Internal Feedback Resistance) This connects a ceramic resonator.
6	6	OPT	Extension Key Input Terminal (Internal Pull-up Resistance) The keys are extended by connecting with switches between the OPT terminal and the key scan terminals KS5 and KS7.
7~10	7, 8, 10, 11	EC₀~EC₃	Key Matrix Input Terminal(Internal Pull-up Resistance) The RCO output is started when this key input is perceived after 36msec period.
11~18	12, 13 15~20	KS7~KS0	Key Scan Output Terminal Key scan time is 0.42msec. In case using maximum 32 keys , all scan time is about 36msec in high speed.
19	21	RCO	Remote Control Oscillation Terminal The pulse line of the transmission cord modulated by carrier wave is output. This pulse operates the IR-LED by driving the base of an external NPN transistor.
20	22	VDD	Power Supply Voltage range is wide from 1.1V to 1.8V, therefore it is single battery (1.5V) enough to operate. Except for key operation, operating current (stand-by current) is dropped under 1uA by stopping oscillation.
-	9, 14	NC	Non Connection

■ FUNCTIONAL DESCRIPTION

(1)Oscillation Circuit

The NJU6014 incorporates an internal oscillation circuit ,therefore , when a ceramic resonator is connected the terminals X_{1N} and X_{0UT} , carrier wave of a transmission signal is generated inside.

(2)Key Matrix

The key of 4×8 matrix consists the inputs EC₀ to EC₃ and the key scan outputs KS₀ to KS₇. And Keys are extended by combining the OPT terminal and the terminals KS₆ and KS₇.

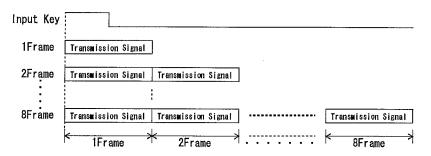
(3) Transmission Signal

(3-1)Data Format

The NJU6014 has 14 kinds of the data transmission format as shown in Table 1.

₩ave Type	Date Line Up
1	Custom Code 8bit Code 8bit Data Code 8bit Data Code 8bit _eaderC1C2C3C4C5C6C7C8C1C2C3C4C5C6C7C8D1D2D3D4D5D6D7D8D1D2D3D4D5D6D7D8 Stop Repeat
2	Custom Gode 8bit Data Gode 8bit _eaderC1C2C3C4C5C6C7C8D1D2D3D4D5D6D7D8 Stop
3	Data Code 6bit D1D2D3D4D5D6 Stop
4	Date Code 10bit D1 2 3 4 5 6 7 8 910 Stop
5	Custom Code 8bit Custom Code 8bit Data Code 8bit Data Code 8bit cader C1C2C3C4C5C6C7C8C1C2C3C4C5C6C7C8D1D2D3D4D5D6D7D8D1D2D3D4D5D6D7D8 Stop
6	Option2 Mask1 Check1 Option2 Mask1 Check1 Address5 Data6 , , , Address5 Data6 ,
7	Data Code 12bit D1 2 3 4 5 6 7 8 9101112 Stop
8	Data Code 12bit Leader D1 2 3 4 5 6 7 8 9101112 Stop
9	Custom Code 8bit Date Code 8bit _eaderC1C2C3C4C5C6C7C8Separator D1D2D3D4D5D6D7D8 Stop
10	Custom Code 8bit Custom Code 8bit Data Code 8bit Data Code 8bit LeaderC1C2C3C4C5C6C7C8C1C2C3C4C5C6C7C8D1D2D3D4D5D6D7D8D1D2D3D4D5D6D7D8 Stop Repeat
11	Custom Code 6bit Data Code 6bit Custom Code 6bit Data Code 6bit LeaderC1C2C3C4C5C6D1D2D3D4D5D6C1C2C3C4C5C6D1D2D3D4D5D6 Stop
12	Custom Code 5bit Data Code 6bit Custom Code 5bit Data Code 6bit _eaderC1C2C3C4C5D1D2D3D4D5D6C1C2C3C4C5D1D2D3D4D5D6 Stop Stop
13	Custon Code 8bit Data Code 8bit C1C2C3C4C5C6C7C8D1D2D3D4D5D6D7D8 Stop
14	Custom Code 8bit Custom Code 8bit Data Code 8bit Data Code 8bit LeaderC1C2C3C4C5C6C7C8C1C2C3C4C5C6C7C8D1D2D3D4D5D6D7D8D1D2D3D4D5D6D7D8 Stop Repeat

Table 1 Data Transmission Format in NJU6014


Note 1)Each wave form is available as the masked ROM option.

9

(3-2) The Number of Output Frame

The number of transmission signal frame generated by minimum key input time is available as the masked ROM option. It has from 1 frame to 8 frame.

(4) Key Operation

(4-1)Standard Key Operation

The key board matrix correspond to the ROM code address is shown as follows:

	Standard Key Matrix								
Key Scan	ECo	EC 1	EC 2	EC3					
KS₀	00(KY1)	08 (KY9)	16(KY17)	24 (KY25)					
KS1	01 (KY2)	09 (KY10)	17 (KY18)	25 (KY26)					
KS₂	02 (KY3)	10 (KY11)	18(KY19)	26 (KY27)					
KS₃	03 (KY4)	11 (KY12)	19 (KY20)	27 (KY28)					
KS₄	04 (KY5)	12 (KY13)	20(KY21)	28 (KY29)					
KS₅	05 (KY6)	13 (KY14)	21 (KY22)	29 (KY30)					
KS€	06 (KY7)	14 (KY15)	22(KY23)	30(KY31)					
KS7	07 (KY8)	15 (KY16)	23(KY24)	31 (KY32)					

Note 2) The inside of parentheses means the key number.

Only for standard key operation, when the roll over input occurs, the transmission data in the data register is cleared by the roll over preventive circuit and the transmission is forbad.

(4-2) Extension Key Operation

The extension key is connected between the OPT terminal and the key scan output terminal KS $_{\rm 6}$ or KS $_{\rm 7}$, key board matrix correspond to ROM code address is shown as follows:

	Standard Key Matrix			E	xtension	Key Mat	rix	7	
Key Scan	EC.	EC 1	EC 2	EC ₃	EC.	EC 1	EC2	EC ₃	OPT
KS₀	00(KY1)	08 (KY9)	16(KY17)	24 (KY25)					
KS 1	01 (KY2)	09 (KY10)	17(KY18)	25 (KY26)					
KS2	02 (KY3)	10 (KY11)	18(KY19)	26 (KY27)	No Extension Key				
KS₃	03 (KY4)	11 (KY12)	19 (KY20)	27 (KY28)					
KS₄	04 (KY5)	12 (KY13)	20(KY21)	28 (KY29)					
KS₅	05 (KY6)	13 (KY14)	21 (KY22)	29 (KY30)					
KS₅	06 (KY7)	14 (KY15)	22(KY23)	30(KY31)	20 21 22 23				KY33
KS7	07 (KY8)	15 (KY16)	23(KY24)	31 (KY32)	24	25	26	27	KY34

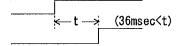
The extension key is formed by the KY33 and the KY34, and it is generated the extension code by operating with the combination key.

New Japan Radio Co., Ltd.

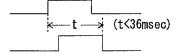
The combination key corresponded to the extension key is as follows:

Extension key	Combination Key				
KY33	KY7	KY15	KY23	KY31	
KY34	KY8	KY16	KY24	KY32	

It is correspondence as this table, therefore any other combinations aren't transmitted, besides, only extension key KY33 or KY34 isn't transmitted. The extension key should be pushed with the combination key.


(4-3)Key Timing Prevented Of Two Key Roll Over

The timing of key scan is 0.42msec. The time to stop scanning is about 36msec. Besides ,to prevent chattering of key ON ,a data isn't read for 9msec after pressing a key. Therefore the key timing prevented of two key roll over is as follow:


① Pressing At The Same Time Within 36msec \rightarrow Forbidding Transmission

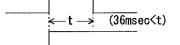
|--|

2 Pressing Second Key after 36msec

③ Taking Off Both Key Within 36msec

→ After Transmitting First Key Data, Forbidding Transmission

↑Kev ON


Key ON

→ Forbidding Transmission

Key ON Key OFF

9-25

④ Taking Off The Other Key After 36msec → Transmitting Rest Key Data

↑ Key ON

As this, provided an key is kept to press over 36msec, its code is transmitted once.

(4-4)Roll Over Timing Of Extension Key

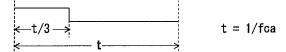
When keys are pressed over two at the same time, transmission is usually forbad by the roll over preventive circuit. However, when the extension key is pressed, it is transmitted by operating with the combination key at input timing as follows:

New Japan Radio Co., Ltd.-

(1) Extension Key Si	gnal Transmission	
Extension Key	t	→ (126msec <t)< td=""></t)<>
Combination Key		
② Forbidding Exter	nsion Key Signal Trans	mission
Extension Key	†	; (36msec <t<126msec)< td=""></t<126msec)<>
Combination Key		
③ Forbidding Exter	nsion Key Signal Trans	mission
Extension Key	Kt>	(-36msec <t<-36msec)< td=""></t<-36msec)<>
Combination Key		
④ Forbidding Exter	nsion Key Signal Trans	mission
Extension Key		
	<u> </u>	→ (36msec <t<126msec)< td=""></t<126msec)<>
Combination Key	Combination Key Code Transmissi	on Forbidding transmission

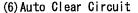
For the order of the priority of pressing key, the extension key can operates when only the combination key is pressed after 126msec at the time of pressing the extension key.

(5) Carrier Frequency Generating Circuit

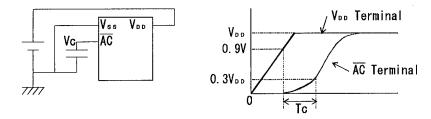

9-26-

Each other seramic resonator corresponded to the carrier wave frequency is shown below.

For ROM option, the seramic resonator should be specified.

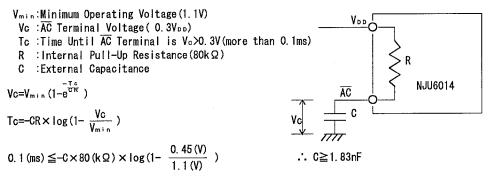

	Serami	Seramics resonator fosc (kHz)						
	393	393 440 455 480 455						
Carrier Frequency fca(kHz)	32. 8	36.7	37.9	40. 0	56.9			
Dividing Frequency Percentage	fosc/12	fosc/12	fosc/12	fosc/12	fosc/8			

The carrier frequency is output in 1/3 duty.



In case of using the ceramic resonator 455kHz and set the frequency dividing ratio to fosc/8, the carrier frequency is 1/2 duty.

-New Japan Radio Co.,Ltd.



Connecting the capacitor between the \overline{AC} terminal and V_{ss}, auto clear function is executed at the time of power-on. After the V_{ob} terminal voltage is risen to 0.9V, it is required that the period (Tc) which the \overline{AC} terminal voltage (Vc) becomes Vc>0.3V_{ob} is Tc>0.1msec. After auto clear function is executed, this circuit is kept the stand-by mode until a key is input.

An external capacitance should be connected value more than 2nF. Example expressions are shown below.

For example(V_{DD}=1.5V Operating)

Therefore, in order to be executed auto clear function exactly, the capacitance more than this numerical value should be connected.

New Japan Radio Co., Ltd.

9-27

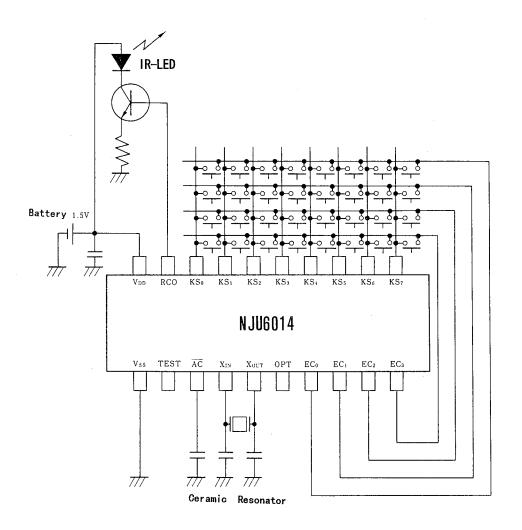
ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	VDD	-0.3 ~ +3.0	v
Input Voltage	V _{±N}	V _{SS} -0.3 ~ V _{DD} +0.3	٧
Operating Temperature	Topr	- 25 ~ + 75	°C
Storage Temperature	Tstg	- 40 ~ + 125	°C

ELECTRICAL CHARACTERISTICS

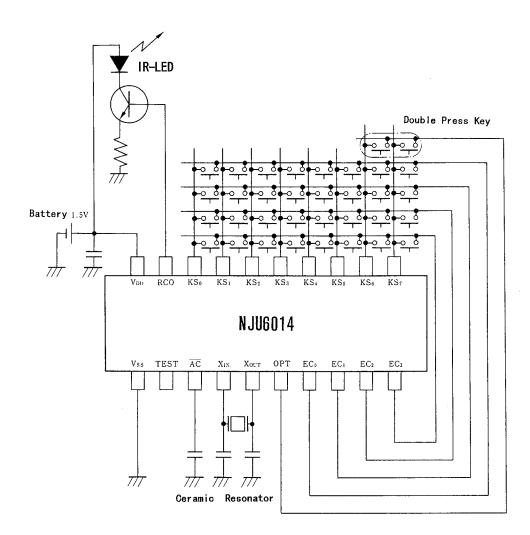
(V_{DD}=1. 2V, Ta=25°C)

PARAMETER	SYMBOL.	CONDITION	1S	MIN.	TYP.	MAX.	UNIT	NOTE
Operating Voltage	V _{DD}	fosc=455	٢Hz	1. 1		1.8	v	
Operating Current	امم	fosc=455	κHz			0.6	mA	
Stand-by Current	Ist					1.0	μA	
"H" Input Voltage	VTH	Each EC, C)PT Terminal	0. 7Vdd		VDD	V	
"L" Input Voltage	Vil	Each EC, C	Each EC,OPT Terminal			0. 3V _{DD}	٧	
Oscillation Frequency	fosc	X i n, Xout	XIN, Xout Terminal		393 440 455 480		kHz	3
Output Current(1)	1 ₀₁₁	Vol=0.3V		0. 1	0. 3			
output ourrent(1)	Гонт	V _{он} =0. 9V	RCO Terminal	- 2	- 4		mA	
Output Current(2)	lor2	Vol=0.9V	Each KS Terminal	0. 5	1.0		mA	
Feedback Resistance	Rf	X _{IN} =V _{DD}	X . N=VDD		1		MΩ	
	R , ,	OPT Termi	OPT Terminal		100			
Pull-up Resistance	I-up Resistance R ₁₂ Each EC Terminal R ₁₃ AC Terminal		Each EC Terminal		100		kΩ	
				80				
Pull-down Resistance	R14	TEST Term	inal		200		kΩ	


(T ---- 0E O)

Note 3) The oscillation frequency is turned by depending the ceramic resonator. The carrier frequency is the masked ROM option ,therefore the ceramic resonator should be designated.

APPLICATION CIRCUIT


(1)Normal Key

JRC

(2) Double Press Key

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.