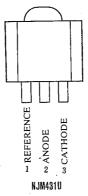
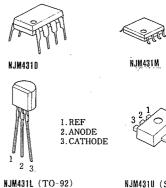
NJM431

ADJUSTABLE PRECISION SHUNT REGULATOR

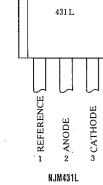

GENERAL DESCRIPTION

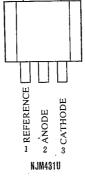
The NJM431 is a 3 terminal adjustable shunt regulator. The output voltage may be set to any value between VREF(about 2.5V) and 36V by two resistors. Output circuitry shows a sharp turn-on characteristics. Applications include shunt regulators, series regulators for small power and isolation regulators with photo couplers.


FEATURES

JRC

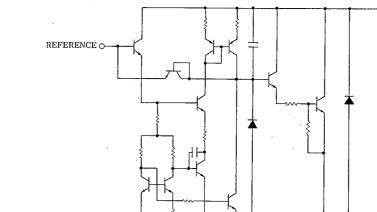
- Operating Voltage ($V_{KA} = V_{REF} \sim 36V$)
- Fast Tum-On Respability
- Cathode Current (1mA~100mA)
- Low Dynamic Output Impedance (0.2Ω typ.)
- DIP8, DMP8. TO-92. SOT-89 Package Outline
- Bipolar Technology


PACKAGE OUTLINE



NJM431U (SOT-89)

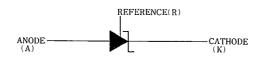
PIN CONFIGURATION



8 REFERENCE CATHODE 1 ()NC 2 7 NC 6 ANODE NC 3 NC 4 5 NC NJM431D NJM431M

OCATHODE

-OANODE


EQUIVALENT CIRCUIT

New Japan Radio Co., Ltd.

BLOCK DIAGEAM

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Cathode Voltage (note)	VKA	37	v
Continuous Cathode Current	Іка	-100~150	mA
Reference Input Current	IREF	-0.05~10	mA
Power Dissipation	Рр	(DIP8) 700	mW
		(DMP8) 300	mW
	rD	(TO92) 500	mW
		(SOT89) 350	mW
Operating Temperature	Topr	$-40 \sim +85$	Ĉ
Storage Temperature	Tstg	-40~+125	ĉ

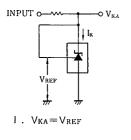
(note) Unless specified, all voltage values are with respect to the anode terminal.

RECOMMENDED OPERATING CONDITIONS

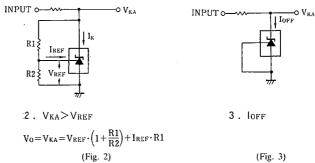
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Cathode Voltage	V _{KA}	V _{REF}	—	36	v
Cathode Current	IK	. 1	_	100	mA

■ ELECTRICAL CHARACTERISTICS (Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Reference Voltage	V _{REF}	$V_{KA} = V_{REF}$, $I_K = 10 \text{mA}$ (note 1)		2440	2495	2550	mV
Reference Voltage Change (Full Oper. Temp. Range)	V _{REF} (dev)	$V_{KA} = V_{REF}, I_K = 10mA \text{ (note 1)}.$ $Ta = -20^{\circ}C \sim +85^{\circ}C$		·	8	ļ7	mV
Reference Voltage Change	ΔV_{REF}	1 10 - 4 (4 - 2)	$\Delta V_{KA} = 10V - V_{REF}$		-1.4	-2.7	mV/V
vs. Cathode Voltage Change	ΔV_{KA}	$I_{K} = 10 \text{mA (note 2)} \frac{\Delta V_{KA} = 10 \text{V} - V_{REF}}{\Delta V_{KA} = 36 \text{V} - 10 \text{V}}$			-1	-2	mV/V
Reference Input Current	IREF	$I_{K}=10mA, R_{1}=10k\Omega, R_{2}=\infty$ (note 2)			2	4	μA
Reference Input Current Change (Full Oper. Temp. Range)	l _{REF} (dev)	$I_{K} = 10mA, R_{1} = 10k\Omega, R_{2} = \infty \text{ (note 2)}$ $T_{a} = -20^{\circ}C \sim +85^{\circ}C$		-	0.4	1.2	μА
Minimum Input Current	I _{MIŇ}	V _{KA} =V _{REF} (note 1)			0.4	1.0	mA
Cathode Current (Off Cond.)	IOFF	$V_{KA}=36V, V_{REF}=0$ (note 3)		_	0.1	1.0	μA
Dynamic Impedance	. Z _{KA}	$V_{KA} = V_{REF}, I_K = 1 \text{mA} \sim 100 \text{mA},$ ($\leq 1 \text{kHz} \text{ (note 1)}$		· · <u>-</u> ·	0.2	,0.5	Ω


(note 1) TEST CIRCUIT (Fig. 1) (note 2) TEST CIRCUIT (Fig. 2)

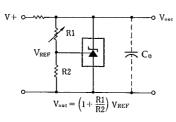
(note 3) TEST CIRCUIT (Fig. 3)


6-67

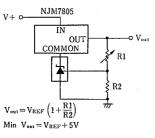
NJM431

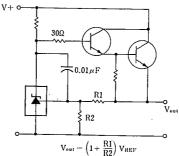
TEST CIRCUITS

 $V_0 = V_{KA} = V_{REF}$ (Fig. 1)

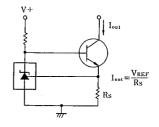


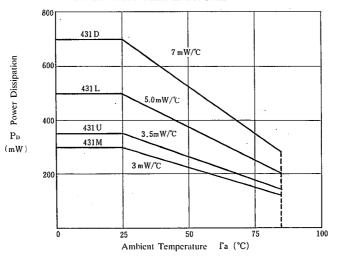
(2) Series Regulator



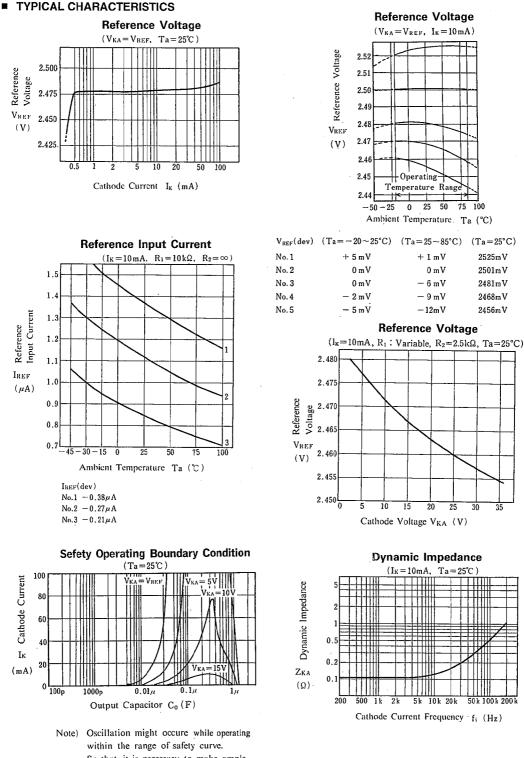


- TYPICAL APPLICATION
 - (1) Shunt Regulator


(3) Output Control of a Three-Terminal fixed Regulator



(4) Constant Current Source


POWER DISSIPATION VS. AMBIENT TEMPERATURE

-New Japan Radio Co., Ltd.

6-68

NJM431

-New Japan Radio Co., Ltd.

So that, it is necessary to make ample margins by taking considerations of flu -ctuation of the device.

6-69

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.