AM/FM RADIO

GENERAL DESCRIPTION

The NJM2237 is monolithic integrated circuit in a 20-lead dual inline plastic package designed for use in 3-6V protable AM/FM radio receivers.

The functions incorporated are AM RF amplifier, AM mixer, FM/AM IF amplifier, FM/AM detecter, AM AGC circuit Audio Power amplifier.

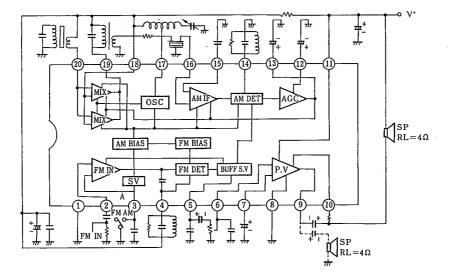
FEATURES

JRC

Wide Operating Voltage (1.8~6.0V)

D1P20

- Very Simple DC switching of FM/AM
- High AM signal handling
- 4Ω speaker direct drive
- Low tweet


.

- Most suitable to use with NJM2236
- Package Outline
- Bipolar Technology

BLOCK DIAGRAM

PACKAGE OUTLINE

(note) Dotted line shws $V^* = 4.5V$

ABSOLUTE MAXIMUM RATINGS

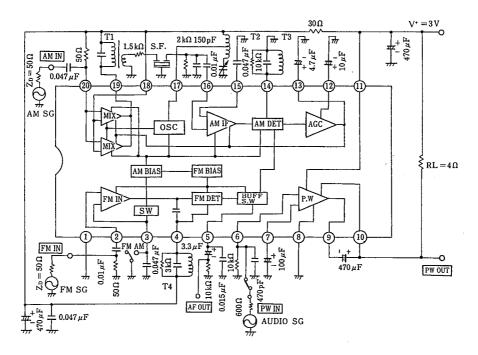
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	8	· V
Output Current	IO(peak)	550	mA
Power Dissipation	Ро	1.2	w
Operating Temperature Range	Topr	-20~75	Ĉ
Storage Temperature Range	Tstg	-40~125	C

ELECTRICAL CHARACTERISTICS

(V ⁺ =3V, Ta=25°C, FM: f=10.7MHz, △f=22.5kHz dev., fm=1kHz
AM: f=1MHz, Mod=30%, fm=1kHz Unless otherwise noted)

							1.1	
	CHARACTERISTICS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Operating Current		I _{CC} (FM)	V _{IN} =0	_	15	20		
		I _{CC} (AM)	V _{IN} =0	_	15	20	mA	
	-3dB Limiting Sensitivity	V _{IN} (lim)		_	36	42	dBμ	
F	Detection Output Voltage	Vod	$V_{IN} = 80 dB \mu$	22	31	44	mVrms	
	Signal to Noise Ratio	S/N	V _{1N} =80dB _µ	_	70	—	dB	
м	Total Harmonic Distortion	THD	$V_{IN} = 80 dB_{\mu}$		0.3	-	%	
	Am Rejection Ratio	AMR	$V_{1N} = 80 dB_{\mu}$		33		dB	
	Voltage Gain	Gv	$V_{IN} = 30 dB\mu$	5	11	17	mVrms	
	Detection Output Voltage		$V_{IN} = 66 dB \mu$	22	31	44	mVrms	
A	Signal to Noise Ratio	S/N	$V_{IN} = 66 d B \mu$	—	46	—	dB	
м	T	THDI	$V_{1N} = 66 dB_{\mu}$	_	1.5	_		
	Total Harmonic Distortion	THD2	$V_{IN} = 106 dB_{\mu}$		4.0		%	
	Local OSC Stop Voltage	VSTOP	V _{OSC} —6dB	—	1.0	1.5	v	
	Voltage Gain	Gv	$f=1kHz, R_L=4\Omega$	37	40	43	dB	
		P _{OD} 1	$f = i k Hz$, $R_L = 4\Omega$, $THD = 10\%$	180 220 —	—			
Р	Output Power	P _{OD} 2	$V^* = 4.5V$ f=1kHz, RL=4 Ω , THD=10%		500	_	mW	
w	Total Harmonic Distortion	THD $f=1kHz, R_L=4\Omega, P_O=50mW$		_	0.5	20	%	
	Output Noise Voltage	V _{NO}	$V_{NO} = \frac{R_{O} = 10k\Omega, RL = 4\Omega}{BW = 30Hz \sim 20kHz}$		0.18	_	mVrms	


—New Japan Radio Co., Ltd.-

4-66

TERMINAL VOLTAGE AT NO SIGNAL

CHARACTERISTICS		SYMBOLS TYPICAL		VALUE.	LINUT	
PIN NO	FUNCTION	31MBOL3	AT AM	AT FM	- UNIT	
1	GND	\mathbf{v}_1	0	0	v	
2	FM IF IN	V ₂	2.4	2.0	v	
3	FM/AM Switch	V3	0	2.0	ν	
4	FM DET	V4	2.9	2.9	v	
5	DET OUT	V5	0.4	0.7	v	
6	PW IN	V6	0	0	v	
7	PW Bipass	V7	0.6	0.6	v	
8	PW GND	V8	0	0	v	
9	PW OUT	V9	1.5	1.5	v	
10	PW Bootstrap	V ₁₀	2.8	2.8	v	
11	V* 1	V11	3.0	3.0	v	
12 13	AGC1	V ₁₂	0.6	0	v	
13	AGC2	V13	0.6	0	V	
14	AM DET	V14	0	0	V	
15	AM Bipass	V15	1.3	0	v v	
16	AM IF IN	V16	1.3	0	v	
17	AM Osc	V17	2.9	2.9	v	
18	V* 2	V ₁₈	2.9	2.9	v	
19	ΑΜ ΜΙΧ ΟυΤ	V19	2.9	2.9	v	
20	AM RF IN	V ₂₀	2.9	2.9	v	

TEST CIRCUIT

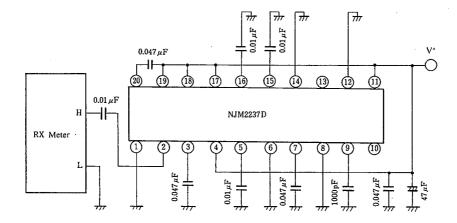
-New Japan Radio Co., Ltd.

(V⁺=3V, Ta=25℃)

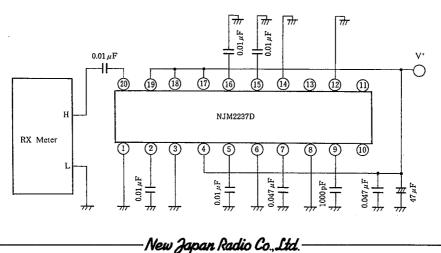
4

-4-67

■ TEST CIRCUIT COIL DATA

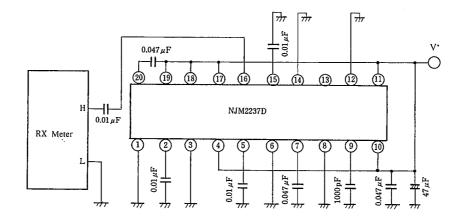

COIL NO.	Fo	Qo	TURNS	Co	BOTTOM VIEW
T1: FM IFT (MIX OUT)	455kHz	①-③ 80	① — ③ 60 T ④ — ⑥ 16 T Wire : 0.09 mm ¢ UEW SUMIDA 2150 — 2173 — 302	①—③ 1500pF	3 2 1 Bottom View
T2: AM OSC	796kHz	①-③ 125	 ① - ② 15 T ② - ③ 89 T Wire: 0.06 mm φ UEW SUMIDA 2157 - 2239 - 213A 	_	(3) (4) (2) (6) (1) (6) Bottom View
T3 : AM DET	455 kHz	①-③ 105	①-③ 127 T Wire : 0.06 mm Ø UEW SUMIDA 2150-2083-061	①③ 330pF	(3) (4) (2) (5) (1) (6) Bottom View
T4∶FM DET	10.7MHz	1-3 100	①-③ 10T Wire : 0.12 mm	Ф—3 150рF	3 (2) (1) Bottom View

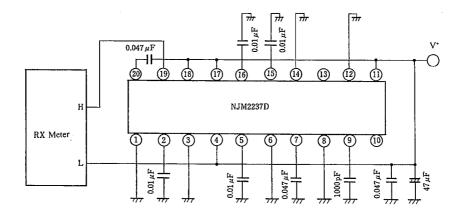
—New Japan Radio Co.,Ltd.—


INPUT OUTPUT IMPEDANCE

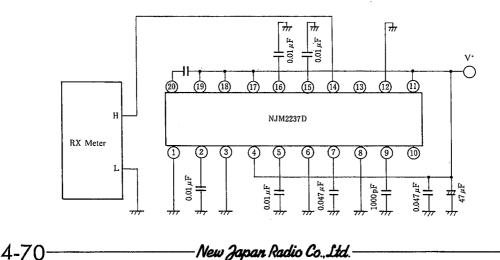
CHARACTERISTIC	SYMBOL	ÇIRCUIT	TEST_ CONDITION	TYP.	UNIT
Pin 2 Input Impedance (FM)	R1N2 C1N2	1	f=10.7MHz	4.6 5.0	kΩ pF
Pin 20 Input Impedance (AM)	R1N20 C1N20	2	f=1MHz	20 11	kΩ pF
Pin 16 Input Impedance (AM)	R1N16 C1N16	3	f=455kHz	6 3.7	kΩ pF
Pin 19 Output Impedance (AM)	R019 C019	4	f=455kHz	2.5 5.5	kΩ pF
Pin 14 Output Impedance (AM)	R014 C014	5	f=455kHz	100 5.0	kΩ pF

TEST CIRCUIT 1 (Pin 2 FM Input Resistance, Capacitance)


TEST CIRCUIT 2 (Pin 20 AM Input Resistance, Capacitance)

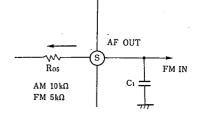

4

-4-69


■ TEST CIRCUIT 3 (Pin 16 AM IF Input Resistance, Capacitance)

TEST CIRCUIT 4 (Pin 19 AM Mix Output Resistance, Capacitance)

TEST CIRCUIT 5 (Pin 14 AM DET Output Resistance, Capacitance)


NOTES

 The frequency characteristics at AM and FM mode The output impedance of pin5 (Ro5) and external capacitor C1 decide frequency characteristics.

The value of Ro5 turns to $10 k \Omega$ at AM mode and $5 k \Omega$ at FM mode.

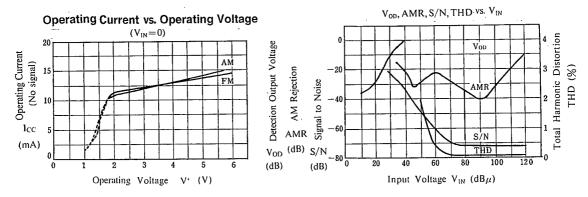
Accordingly should consider above, trim C1 to get proper frequency response.

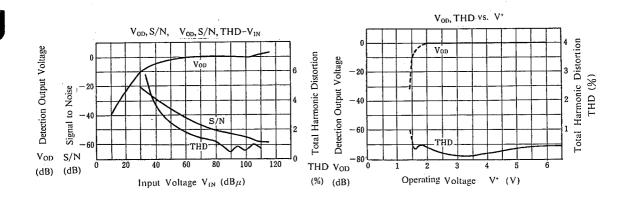
Besides should design the location of C1 closer to pin1 (GND) to get low tweet.

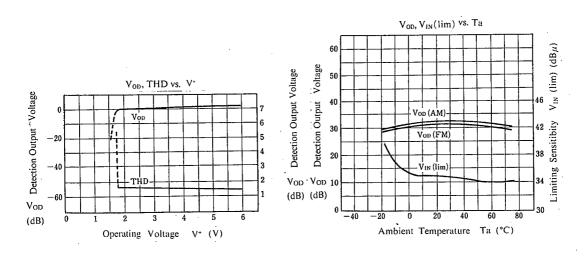
2. Loading speaker

Recommend to connect the speaker between pin11 (V^*) and pin10 (bootstrap) at $V^*=3V$ for better low supply to voltage operation.

When Vcc is above 4.5V, recommend the speaker connection between pin9 (PW OUT) and (GND) through a coupling capacitor.

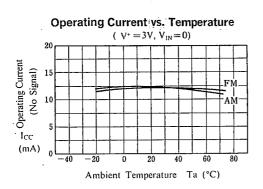

3. Termination to the power stage

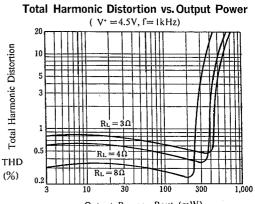

The audio signal of output pin5 includes carrier component slightly, therefore a capacitor between pin6 and GND have to be connected to decrease carrier component.


4. Supply voltage start-up

The supply voltage of radio circuit block should not start up before power stage start-up.

TYPICAL CHARACTERISTICS




-New Japan Radio Co.,Ltd.

.

4-72

TYPICAL CHARACTERISTICS

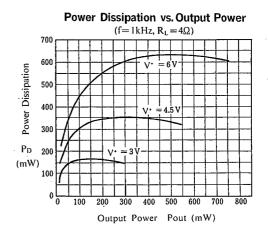
Output Power Pout (mW)

Total Harmonic Distortion vs. Output Power $(V^* = 3V, f = 1 \text{ kHz})$ 20 Total Harmonic Distortion 10 5 3 $R_L =$ 30 = 4 Ω THD ^{0.5} (%) $R_L =$ - 8.0 0.2 3 10 30 100 300 1.000 Output Power Pout (mW)

Total Harmonic Distortion vs. Output Power $(V^{*} = 4.5V, R_{L} = 4\Omega)$ 2(Total Harmonic Distortion 10 f == 10kH 5 100 H 0.5 THD f = kHz (%) 0.2 1,000 10 30 100 300 Output Power Pout (mW)

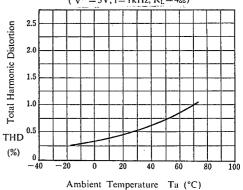
Total Harmonic Distortion vs. Output Power $(V^{+}=3V, R_{L}=4\Omega)$ 20 Total Harmonic Distortion 10 $f = 10 \, \text{kHz}$ 5 3 THD 0.5 (%) 0.2 100 300 1,000 30 3 10 Output Power Pout (mW)

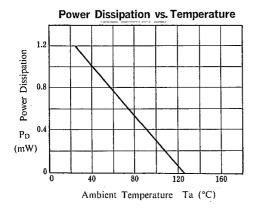
-New Japan Radio Co., Ltd.


Total Harmonic Distortion vs. Frequency $(V^{+}=3V, V_{0}=450mVrms)$ 10 Total Harmonic Distortion 5 3 1 0.5 THD (%) 0.2 0.1 0.3 3 10 1 Frequency f (kHz)

-73

_


TYPICAL CHARACTERISTICS



Output Power vs. Operating Voltage $(f = 1 \text{ kHz}, THD = 10\%, R_L = 4\Omega)$ 1,000 800 Output Power 600 400 Pout (mW) 200 0 ō 3 4 5 6 1 2 Operating Voltage V* (V)

Total Harmonic Distortion vs. Temperature ($v^* = 3V$, f = 1kHz, $R_L = 4\Omega$)

4

4-74

-New Japan Radio Co.,Ltd.-

FM/AM RADIO APPLICATION CIRCUIT

4

FM/AM RADIO APPLICATION CIRCUIT

COIL NO.	Fo	Qo	TURNS	Co	BOTTOM VIEW
L ₁ : RF Coil	100 MHz	100	$\begin{array}{rrr} 0.7 \text{mm} \neq & 2 \frac{1}{4} \text{ T} \\ \text{(Japan Band)} \\ \text{SUMIDA} \\ 0295 - 057 \end{array}$	22 pF (ext.)	7 mm ↓ ↓ 5 mm Ferrite Core '
L2: OSC Coil	100 MHz	100	0.7mmø 2 <u>1</u> 7 (Japan Band) SUMIDA ¹ 0295−056	30pF (ext.)	7 mm Ferrite Core
L3: AM ANT	796 kHz	①② 200	 ①-② 100 T L=600 µH ③-④ 17 T Wire: 4/0.07mm UATC Core: 10mm\$×80mm MITUMI YI-7160-1 	_	Image: Constraint of the second se
L₄: AM OSC	796 kHz	①-③ 125	 ① - ② 15 T ② - ③ 89 T Wire : 0.06 mm≠ UEW SUMIDA 2157 - 2239 - 213 A 	_	V.C. 17 pin Vcc BOTTOM VIEW

—New Japan Radio Co.,Ltd.—

4

4-76-

COIL NO.	Fo	Qu	TURNS	C ₀	BOTTOM VIEW
Tı:FM IFT	10.7MHz	Ū−③ 90	 ①-③ 11T ④-⑥ 2 T Wire : 0.12 mm¢ UEW SUMIDA 2153-414-041 	①-③ 82pF	V ⁻ 6 pin (3) (2) (1) (4) (6) (C.F.
T2: AM IFT	4 55 kHz	①-③ 80	 ①-③ 60 T ④-⑥ 16 T Wire : 0.09 mmø UEW SUMIDA 2150-2173-302 	①-③ 1500pF	19pin 3 (2) (1) (4) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7
T₃:AM DET	455 kHz	①—③ 105	①③ 127 T Wire : 0.06mmø UEW SUMIDA' 2150-2083-061	①-③ 3330 pF	14 pin (3), (4) (2), (2), (4) (3), (4) (2), (4) (2), (4) (4) (2), (4) (4) (2), (4) (4) (2), (4) (4) (2), (4) (4) (6)
T₄:FM DET	10.7 MHz	①-③ 100	(Ĵ−③ 10 T Wire : 0.12 mmø UEW SUMIDA' 2153-4095-331	①-③ 150pF	V $(3 \ 4 \ pin \ 1 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6$

4

4-77

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.