QUAD OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2059 integrated circuit is a quad high-gain operational amplifier internally compensated and constructed on a single silicon chip using an advanced epitaxial process.

The NJM2059 has wider unity gain bandwidth and larger slew rate compared to the NJM2058.

Each amplifier of the NJM2059 has the same electrical characteristics of the NJM4559.

■ FEATURES

Operating Voltage

 $(\pm 4V \sim \pm 18V)$

Siew Rate

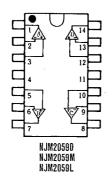
 $(2V/\mu s typ.)$

Unity Gain Bandwidth Package Outline

(6MHz typ.) DIP14, DMP14, (SSOP14)

Bipolar Technology

■ PACKAGE OUTLINE


N.IM20590

NJM2059M

NJM2059V

PIN CONFIGURATION

PIN FUNCTION

- 1. A OUTPUT
- 2. A-INPUT
- 3 . A+INPUT 4 . V+
- 5. B+INPUT 6. B-INPUT
- 7. B OUTPUT
- 8. C OUTPUT
- 9. C-INPUT
- 10. C+INPUT
- 11. V
- 12. D+INPUT
- 13. D-INPUT 14. D OUTPUT

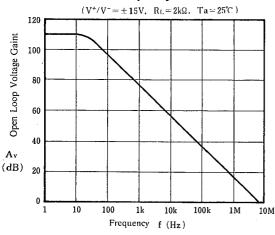
■ EQUIVALENT CIRCUIT (1/4 Shown)

■ ABSOLUTE MAXIMUM RATINGS

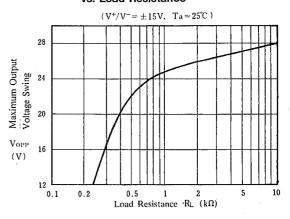
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS		UNIT
Supply Voltage	V*/V-	±18		V
Differential Input Voltage	V _{ID}	±30		V
Input Voltage	V _{IC}	±15	(note 1)	٧
Power Dissipation	PD	(DIP14) 700		mW
		(DIM14) 700	(note 2)	mW
		(SSOP14) 300		mW
Operating Temperature Range	Topr	-40~+85		C
Storage Temperature Range	Tstg	-40~+125		r

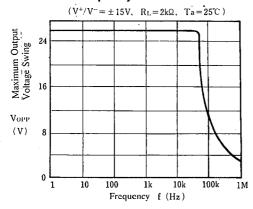
(note 1) For supply voltage less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage, (note 2) At on PC board

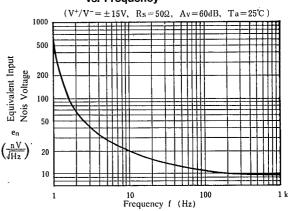

■ ELECTRICAL CHARACTERISTICS

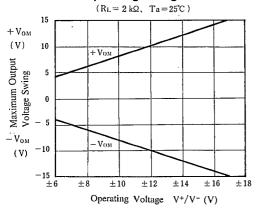
 $(Ta = 25^{\circ}C, V^{\dagger}/V^{-} = \pm 15V)$


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT:
Input Offset Voltage	V _{IO}	R _s ≤10kΩ		0.5	6	mV
Input Offset Current	I _{1O}		_	5	200	nA
Input Bias Current	IB		_	20	500	пA
Input Resistance	RIN		0.3	1	_	MΩ
Large Signal Voltage Gain	Av	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	100	_ '	dB
Maximum Output Voltage Swing 1	V _{OM1}	R _L ≥10kΩ	±12	±14	l _	v
Maximum Output Voltage Swing 2	V _{OM2} .	R _L ≥2kΩ	±10	±13	_	v
Input Common Mode Voltage Range	V _{ICM}		±12	±14	_	v
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	70	90	_	dB
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	76.5	90	_	dB ¹
Operating Current	Icc	-	_	7	11.3	mA
Slew Rate	SR		_	2		V/µs
Equivalent Input Noise Voltage	V _{N1}	RIAA, R _s =2.2kΩ, 30kHz LPF	_	1.4	_	μVrm:

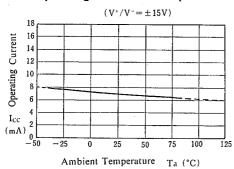
■ TYPICAL CHARACTERISTICS


Open Loop Voltage Gain vs. Frequency

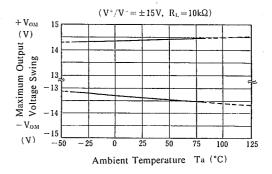

Maximum Output Voltage Swing vs. Load Resistance


Maximum Output Voltage Swing vs. Frequency

Equivalent Input Noise Voltage vs. Frequency

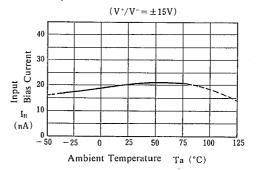


Maximum Output Voltage Swing vs. Operating Voltage

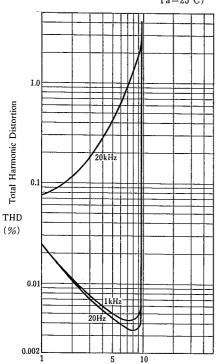


TYPICAL CHARACTERISTICS

Operating Current vs. Temperature

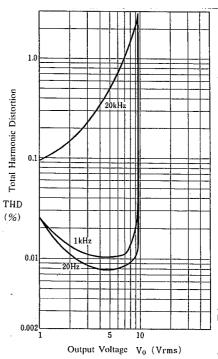

Maximum Output Voltage Swing vs. Temperature

Input Offset voltage vs. Temperature


Input Bias Current vs. Temperature

■ TYPICAL CHARACTERISTICS

Total Harmonic Distoriton


 $(V^+/V^- = \pm 15V, Gain = 40dB, R_L = 10k\Omega, Ta = 25^{\circ}C)$

Output Voltage V_0 (Vrms)

Total Harmonic Distortion

(V+/V-= ± 15 V, Gain=40dB, R_L=2k Ω , Ta=25°C)

NJM2059

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.