Features

- Microprocessor compatible control inputs
- On chip control memory and address decoding
- Row addressing
- Master reset
- 32 crosspoint switches in 8×4 array
- 5.0 V to 15.0 V operation
- Low crosstalk between switches
- Low on resistance: 90Ω (typ.) at 13 V
- Matched switch characteristics
- Switches frequencies up to 40 MHz

Applications

- PABX and key sytems
- Data acquisition systems
- Test equipment/instrumentation
- Analog/digital multiplexers

ISSUE 3
March 1997

Ordering Information

```
MT8804AE 24 Pin Plastic DIP
MT8804AP 28 Pin PLCC
    -40}\mathrm{ to }8\mp@subsup{5}{}{\circ}\textrm{C
```


Description

The MT8804A is a CMOS/LSI 8×4 Analog Switch Array incorporating control memory (32 bits), decoder and digital logic level converters. This circuit has digitally controlled analog switches having very low "ON" resistance and very low "OFF" leakage current. Switches will operate with analog signals at frequencies to 40 MHz and up to $15.0 \mathrm{Vp}-\mathrm{p}$. A "HIGH" on the Master Reset input switches all channels "OFF" and clears the memory. This device is ideal for crosspoint switching applications.

Figure 1 - Functional Block Diagram

24 PIN PLASTIC DIP

28 PIN PLCC

Figure 2 - Pin Connections

Pin Description

| Pin \# | | Name | |
| :---: | :---: | :---: | :--- | :--- |
| PDIP | PLCC | | |
| 1 1-3 | $1-3$ | L2-LO | L2-L0 Analog Lines (Inputs/Outputs): These are connected to the L2-L0 columns of
 the switch array. |
| 4 | 6 | D0 | D0 Data (Input): Active High. |
| 5 | 7 | J0 | J0 Analog Junctor (Input/Output). This is connected to the J0 row of the switch array. |
| 6 | 8 | D1 | DI Data (Input). Active High. |

Functional Description

The MT8804A is a CMOS/LSI 8 X 4 Analog Switch Array incorporating an 8×4 analog switch array, address decoder, control memory, and digital logic level converter.

The analog switch array is arranged in 8 rows and 4 columns. The row input/outputs are referred to as Lines (LO-L7) and the column input/outputs as Junctors (JO-J3). The crosspoint analog switches interconnect the lines and junctors when turned "ON" and provide a high degree of isolation when turned "OFF". Interchannel crosstalk is minimal despite the high density of the analog switch array. The control memory of the MT8804A can be treated as an 8 word by 4 bit random access memory. The 8 words are selected by the ADDRESS (A0-A2) inputs through the on chip address decoder. Data is presented to the memory via the four DATA inputs (D0-D3). This data is asynchronously written into the control memory whenever the ADDRESS ENABLE (AE) input is HIGH. A HIGH level written into a memory cell turns the corresponding crosspoint switch "ON" while a LOW level causes the crosspoint to turn "OFF".

Only the crosspoint switches corresponding to the addressed memory word are affected when data is written into the memory. The remaining switches retain their previous states. By establishing appropriate patterns in the control memory, any combination of lines and junctors may be interconnected. A HIGH level on the MASTER RESET (MR) input returns all memory locations to a LOW level and turns all crosspoint switches "OFF" effectively isolating the lines from the junctors. The digital logic level converters allow the digital input levels to differ from limits of the analog levels switched through the array. For example, with

Figure 3 - On Resistance vs. Temperature (Input Signal Voltage=Supply Voltage/2)
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-6 \mathrm{~V}$, the control inputs can be driven by a 5 V system while the analog voltages through the crosspoint switches can swing from +5 V to -6 V .

Figure 4 - On Resistance vs. Input Signal Voltage

8x8 Analog/Digital Switch

Two MT8804s configured as shown, implement an 8×8 analog/digital switch. The switch capacity can be expanded to an $\mathrm{M} \times \mathrm{N}$ array of inputs/ outputs. Expansion in the M dimension is as shown with the MT8804A lines (LO-L7) commoned. Expansion in the N dimension is accomplished by replicating the circuit shown and connecting the MT8804A junctors (JO-J3) in common. The address and data control inputs of the MT8804A's can be connected in common for any size and switch provided that the address enable (AE) inputs are driven individually. A particular signal path is connected by setting up the appropriate signals or the address and data lines and taking the corresponding address enable input high. The master reset (MR), when taken high, disconnects all signal paths.

Figure 5-8 x 8 Analog/Digital Switch

Absolute Maximum Ratings* - Voltages are with respect to V_{EE} unless otherwise stated.

	Parameter	Symbol	Min	Max	Units
1	Supply Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-0.3	16	V
		$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	-0.3	16	V
		$\mathrm{~V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{EE}}$	-0.3	16	V
2	Analog Input Voltage	$\mathrm{V}_{\mathrm{INA}}$	$\mathrm{V}_{\mathrm{EE}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
3	Digital Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
4	Current on any Logic Pin	I		10	mA
5	Storage Temperature	T_{S}	-65	+150	${ }^{\circ} \mathrm{C}$
6	Package Power Dissipation	PLASTIC DIP	P_{D}		0.6
W					

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to $\mathrm{V}_{\text {EE }}$ unless otherwise stated.

	Characteristics	Sym	Min	Typ	Max	Units	Test Conditions
1	Operating Temperature	T_{O}	-40	25	85	${ }^{\circ} \mathrm{C}$	
2	Supply Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	5	5	15	V	
		$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	5	10	15	V	
3	Analog Input Voltage	$\mathrm{V}_{\mathrm{SS}} \mathrm{V}_{\mathrm{EE}}$	0	5	10	V	
4	Digital Input Voltage	$\mathrm{V}_{\mathrm{INA}}$	V_{EE}		V_{DD}	V	

DC Electrical Characteristics ${ }^{\dagger}$ - Voltages are with respect to $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	Quiescent Supply Current	${ }^{\text {ID }}$		1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$. All digital inputs at $V_{I N}=V_{S S} \text { or } V_{D D}$
2	Off-state Leakage Current (Any line to any junctor)	IofF		± 0.1	± 500	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13 \mathrm{~V} \text {, Switch is ‘Off' } \\ & \mathrm{IV}_{\mathrm{Ji}}-\mathrm{V}_{\mathrm{L} \mathrm{j}} \mathrm{I}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \end{aligned}$
3	Input Logic "0" level	V_{IL}			$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \mathrm{V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{INA}}=\mathrm{V}_{\mathrm{DD}} \text { through } 1 \mathrm{k} \Omega \end{aligned}$
4	Input Logic "1" level	V_{IH}	$\begin{aligned} & \hline 7.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {INA }}=\mathrm{V}_{\mathrm{DD}} \text { through } 1 \mathrm{k} \Omega \end{aligned}$
5	Maximum current through Crosspoint Switch	$\mathrm{I}_{\text {MAX }}$			± 8.0	mA	$\mathrm{V}_{\mathrm{DD}}=13 \mathrm{~V}$

\dagger DC Electrical Characteristics are at ambient temperature $\left(25^{\circ} \mathrm{C}\right)$.
\ddagger Typical figures are for design aid only; not guaranteed and not subject to production testing.
DC Electrical Characteristics- Switch Resistance $-V_{D C}$ is the external DC offset applied at the analog $1 / O$ pins.

	Characteristics	Sym	$25^{\circ} \mathrm{C}$			$70^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	Units	Test Conditions
			Min	Typ	Max	Typ	Typ		
1	On-state $\mathrm{V}_{\mathrm{DD}}=13 \mathrm{~V}$ Resistance $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	R_{ON}	60	$\begin{gathered} \hline 90 \\ 105 \\ 290 \end{gathered}$	$\begin{aligned} & \hline 108 \\ & 160 \\ & 650 \end{aligned}$	$\begin{aligned} & 105 \\ & 120 \\ & 320 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 125 \\ & 325 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{IV}_{\mathrm{Ji}}-\mathrm{V}_{\mathrm{Lj}} \mathrm{I}=0.6 \mathrm{~V} \end{aligned}$
2	Difference in on-state resistance between two switches $\begin{aligned} & V_{D D}=13 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \hline \end{aligned}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{IV}_{\mathrm{Ji}}-\mathrm{V}_{\mathrm{Lj}}=0.6 \mathrm{~V} \end{aligned}$

AC Electrical Characteristics ${ }^{\dagger}$ - Crosspoint Performance $-V_{D C}$ is the external $D C$ offset applied at the analog I/O pins. Voltages are with respect to $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=\mathrm{OV}$ unless otherwise stated.

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	Switch Line Capacitance	$\mathrm{C}_{\text {IS }}$		5		pF	
2	Switch Junctor Capacitance	$\mathrm{C}_{\text {OS }}$		20		pF	
3	Feedthrough Capacitance	C_{1}		0.2		pF	
4	Frequency Response Channel "ON" $20 L O G\left(V_{\text {OUT }} / V_{\text {INA }}\right)=-3 d B$	$\mathrm{F}_{3 \mathrm{~dB}}$		40		MHz	$\begin{aligned} & \text { Switch is "ON"; } V_{D C}=5 \mathrm{~V}, \\ & V_{\text {INA }}=5 \mathrm{Vpp} \text { sinewave } \\ & \mathrm{f}=1 \mathrm{kHz} ; \quad R_{L}=1 \mathrm{k} \Omega \end{aligned}$
5	$\begin{gathered} \text { Total Harmonic Distortion } \\ V_{D D}=15 \mathrm{~V} / \mathrm{V}_{\mathrm{DC}}=7.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} / \mathrm{V}_{\mathrm{DC}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} / \mathrm{V}_{\mathrm{DC}}=2.5 \mathrm{~V} \\ \hline \end{gathered}$	THD		$\begin{aligned} & 0.1 \\ & 0.2 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$	Switch is " ON "; $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ $\mathrm{V}_{\text {INA }}=5 \mathrm{Vpp}$ sinewave $\mathrm{f}=1 \mathrm{kHz}$; $R_{L}=10 \mathrm{k} \Omega$
6	Feedthrough Channel "OFF" Feed. $=20 \mathrm{LOG}\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {INA }}\right)$	FDT		-50		dB	All Switches "OFF"; $\mathrm{V}_{\text {INA }}=$ 5Vpp sinewave $\mathrm{f}=1 \mathrm{MHz}$; $R_{L}=1 \mathrm{k} \Omega . V_{D C}=5 \mathrm{~V}$
7	Crosstalk between any two channels for switches Li - Ji and Lj - Jj. $\mathrm{Li}-\mathrm{Ji}$ is "ON" $\mathrm{Lj}-\mathrm{Jj}$ is "OFF" Xtalk=20LOG $\left(V_{\mathrm{Jj}} / \mathrm{V}_{\mathrm{Li}}\right)$.	$\mathrm{X}_{\text {talk }}$		$\begin{aligned} & -40 \\ & -90 \end{aligned}$		dB dB	$\begin{aligned} & V_{\text {INA }}=2 \mathrm{Vpp} \text { sinewave } \\ & f=1.0 \mathrm{MHz} ; R_{\mathrm{L}}=600 \Omega . \\ & \mathrm{V}_{\text {INA }}=2 \mathrm{Vpp} \text { sinewave } \\ & \mathrm{f}=3.4 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=600 \Omega . \\ & \mathrm{V}_{\mathrm{DC}}=5 \mathrm{~V} \end{aligned}$
8	Propagation delay through switch	$\mathrm{t}_{\text {PS }}$		10		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

\dagger AC Electrical Characteristics are at ambient temperature $\left(25^{\circ} \mathrm{C}\right)$.
\ddagger Typical figures are for design aid only; not guaranteed and not subject to production testing.
AC Electrical Characteristics ${ }^{\dagger}$ - Control and I/O Timings- Voltages are with respect to $\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ unless otherwise stated.

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions	
1	Digital Input Capacitance	C_{DI}		5		pF	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	
2	Setup Time D0-D3 to AE	$\mathrm{t}_{\text {DS }}$	$\begin{aligned} & \hline 150 \\ & 200 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	
3	Hold Time D0-D3 to AE	$t_{\text {DH }}$	$\begin{aligned} & \hline 120 \\ & 300 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	
4	Setup Time Address to AE	$\mathrm{t}_{\text {AS }}$	$\begin{gathered} 0 \\ 50 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	
5	Hold Time Address to AE	$\mathrm{t}_{\text {AH }}$	$\begin{array}{r} 120 \\ 300 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	
6	AE Pulse Width	$\mathrm{t}_{\text {AEW }}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	
7	AE to Switch Status Delay	$t_{\text {PAE }}$		$\begin{array}{r} 200 \\ 650 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$	See Note 1
8	DATA to Switch Status Delay	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$		$\begin{array}{r} 250 \\ 650 \\ \hline \end{array}$	$\begin{gathered} \hline 400 \\ 1000 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	See Note 1
9	MR to Switch Status Delay	t_{MR} $\mathrm{t}_{\mathrm{MRR}}$		$\begin{aligned} & 250 \\ & 500 \\ & 200 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 400 \\ & 600 \\ & 350 \\ & 750 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{D D}=10 \mathrm{~V}$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	See Note 2

\dagger AC Electrical Characteristics are at ambient temperature $\left(25^{\circ} \mathrm{C}\right)$.
\ddagger Typical figures are for design aid only; not guaranteed and not subject to production testing.
Note $1 \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Note $2 \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Digital Input rise time (tr) and fall time (tf) $=5 \mathrm{~ns}$.

Figure 6 - Control Memory Timing Diagram

Memory Reset MR	Address Enable AE	Address			Addressed Line	Input Data To Control Memory				Junctors Connected To Addressed Line			
		A2	A1	A0		D3	D2	D1	D0	J3	J2	J1	J0
1	X	X	X	X	ALL	X	X	X	X	All Switches "OFF"			
0	0	X	X	X	NONE	X	X	X	X	No Change of State			
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { LO } \\ & \text { LO } \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$		+ + + + + \bullet + + + + +		
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{L} 1 \\ \downarrow \\ \mathrm{~L} 1 \end{gathered}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	\downarrow +	\downarrow +	$\begin{aligned} & \downarrow \\ & + \end{aligned}$	
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{L} 2 \\ \downarrow \\ \mathrm{~L} 2 \end{gathered}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	\downarrow +	\downarrow +	$\begin{aligned} & \downarrow \\ & + \end{aligned}$	$\begin{aligned} & \bullet \\ & \downarrow \\ & + \end{aligned}$
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{gathered} \text { L3 } \\ \downarrow \\ \text { L3 } \end{gathered}$	0	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & \dot{\downarrow} \\ & + \end{aligned}$	\downarrow + +		$\begin{aligned} & \bullet \\ & \downarrow \\ & + \end{aligned}$
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{gathered} \llcorner 4 \\ \downarrow \\ \llcorner 4 \end{gathered}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & \dot{\downarrow} \\ & + \end{aligned}$	\downarrow +	$\begin{aligned} & \downarrow \\ & + \end{aligned}$	$\begin{aligned} & \dot{\downarrow} \\ & + \end{aligned}$
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{L} 5 \\ \downarrow \\ \text { L5 } \end{gathered}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	\downarrow +	\downarrow \downarrow +	\downarrow +	$\begin{aligned} & \bullet \\ & \downarrow \\ & + \end{aligned}$
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{gathered} \text { L6 } \\ \downarrow \\ \text { L6 } \end{gathered}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	+ +	\downarrow + +		
$\begin{aligned} & 0 \\ & \downarrow \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	1 \downarrow 1	1 \downarrow 1	$\begin{aligned} & 1 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{L} 7 \\ \downarrow \\ \text { L7 } \end{gathered}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \downarrow \\ & 1 \end{aligned}$	\downarrow +	\downarrow + +	\downarrow +	\downarrow +

Table 1 - Address Decode Truth Table
NOTES:

Notes:

1. All dimensions and tolerances conform to ANSI Y14.5M-1982
2. Dimensions D1 and E1 do not include mould protrusions.

Allowable mould protrusion is 0.010 " per side. Dimensions D1 and E1
include mould protrusion mismatch and are determined at the
parting line, that is D1 and E1 are measured at the extreme material
condition at the upper or lower parting line.
3. Controlling dimensions in Inches.
4. " N " is the number of terminals.
5. Not To Scale

6 . Dimension R required for 120° minimum bend.

© Zarink Semiconductor 2002 All rights reserved.				ZARLINK SEMICONDUCTOR		Package Code QA
ISSUE	1	2	3		Previous package codes	Package Outline for
ACN	5958	207469	212422			$28 \text { lead PLCC }$
DATE	15Aug94	10Sep99	22Mar02			
APPRD.						GヤOOOO2

For more information about all Zarlink products visit our Web Site at

 www.zarlink.comInformation relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in and $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

