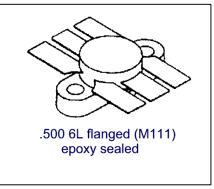
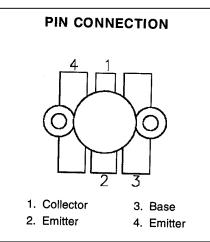


140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013

PHONE: (215) 631-9840 FAX: (215) 631-9855

MS1251


RF & MICROWAVE TRANSISTORS VHF MOBILE APPLICATIONS


Features

- 175 MHz
- 12.5 VOLTS
- P_{OUT} = 45 WATTS
- $G_P = 6.5 \text{ dB MINIMUM}$
- INPUT MATCHED
- COMMON EMITTER CONFIGURATION
- VSWR = 20:1

DESCRIPTION:

The MS1251 is an epitaxial silicon NPN planar transistor designed primarily for 12.5 V, Class C VHF communications. This device utilizes diffused emitter resistors to achieve 20:1 VSWR capability at rated operating conditions.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25° C)

Symbol	Parameter	Value	Unit
V_{CBO}	Collector - Base Voltage	36	V
V _{CEO}	Collector - Emitter Voltage	18	V
V _{CES}	Collector - Emitter Voltage	36	V
V _{EBO}	Emitter - Base Voltage	4.0	V
Ic	Device Current	6.0	Α
P _{DISS}	Power Dissipation	145	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Thermal Data

R _{TH(J-C)} Junction-Case Thermal Resist	nce 1.2	°C/W
---	---------	------

ELECTRICAL SPECIFICATIONS (Tcase = 25°C) STATIC

Cymphol	Took Conditions		Value			
Symbol	ymbol Test Conditions		Min.	Тур.	Max.	Unit
BV _{CBO}	I _C = 50 mA	I _E = 0 mA	36			٧
BV _{CES}	I _C = 50 mA	V _{BE} = 0 V	36			V
BV _{CEO}	I _C = 50 mA	I _B = 0 mA	18			V
BV _{EBO}	I _E = 10 mA	$I_C = 0 \text{ mA}$	4.0			V
I _{CES}	V _{CE} = 15 V	I _E = 0 mA			5	mA
H _{FE}	V _{CE} = 5 V	I _C = 5 A	20		200	

DYNAMIC

Symbol Test Conditions		Value			Unit		
Symbol	oi rest conditions		Min.	Тур.	Max.	Oilit	
Роит	f = 138 - 175 MHz	P _{IN} = 10 W	V _{CE} = 12.5 V	45			W
G _P	f = 138 - 175 MHz	P _{IN} = 10 W	V _{CE} = 12.5 V	6.5			dB
ης	f = 138 - 175 MHz	P _{IN} = 10 W	V _{CE} = 12.5 V	50			%
Сов	f =1 MHz	V _{CB} = 12.5 V				135	pF

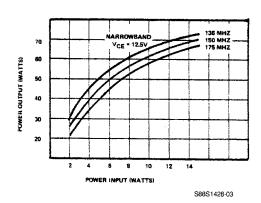
IMPEDANCE DATA

FREQ	$Z_IN(\Omega)$	$Z_{CL}(\Omega)$
175 MHz	1.38 + j0.44	1.70 + j0.48

 $P_{IN} = 10 \text{ W}$ $V_{CE} = 12.5 \text{ V}$

TYPICAL PERFORMANCE

POWER OUTPUT VS. VCE

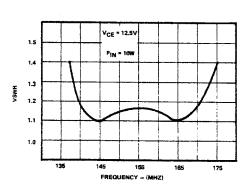

NAFROWBAND 175 MHZ PIN = 15W PIN = 10W PIN = 8W PIN = 8W PIN = 3W PIN = 3W PIN = 3W

COLLECTOR-EMITTER VOLTAGE (VOLTS)

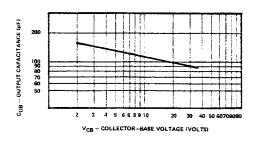
S88SD1428-02

POWER OUTPUT (WATTS)

POWER OUTPUT VS.POWER INPUT

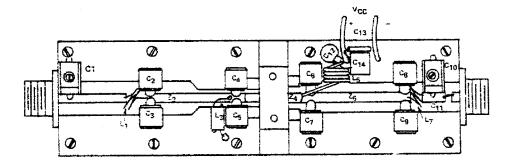


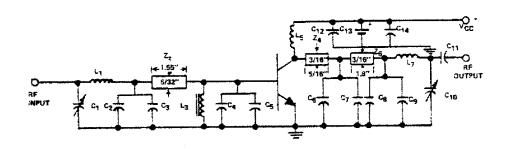
TYPICAL PERFORMANCE (CONTINUED)


POWER GAIN & COLLECTOR EFFICIENCY vs FREQUENCY

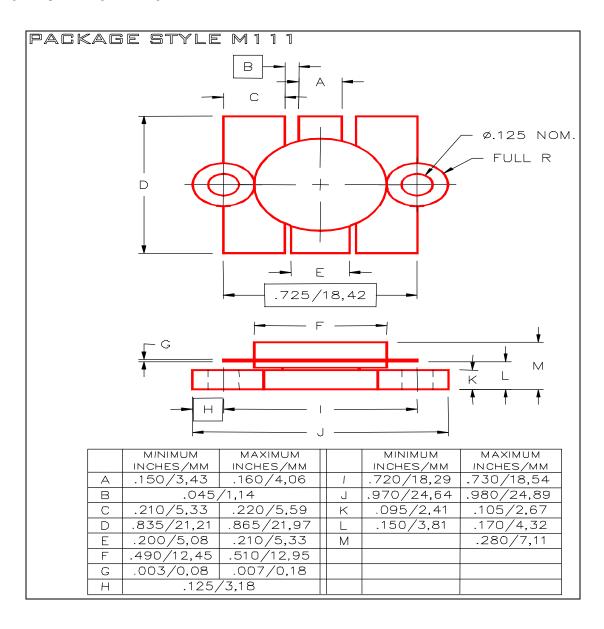
SECONDAND IN THE POWER BAND IN

INPUT VSWR vs FREQUENCY




COLLECTOR CAPACITANCE vs VOLTAGE

TEST CIRCUIT


C1, C10 C2 C3 C4 C5 C6, C7 C8, C9 4 - 40pF ARCO 403 39pF Unelco 1000pF Unelco 2 Turns, #18 AWG, 1/4" I.D., Wire Spacing, Enameled 56pF Unelco L3 vk200 Ferroxcube 82pF Unelco 4 Turns, #16 AWG, 1/4" I.D., Close Wound, Enameled L5 100pF Unelco 200pF Unelco 62pF Unelco 2 Turns, #16 AWG, 17/64" I.D., Wire Spacing, Enameled Approx. 8.1mH Approx. 2.3mH Approx. 10.1mH L7 .015f Erie Red Cap Z2 Z4 Z6 C12 .01f Erie Disk

4.7f Electrolytic

PACKAGE MECHANICAL DATA

