$\propto \mathcal{N}_{\varepsilon \sigma} \mathcal{I}_{\varepsilon r 1 \varepsilon y} S_{\varepsilon m i-C o n d u c t o r} \mathfrak{P}_{\text {roduct }}, D_{n c}$.

20 STERN AVE.
TELEPHONE: (973) 376-2922
(212) 227-6005

SPRINGFIELD, NEW JERSEY 07081
U.S.A.

SWITCHMODE Series
 PNP Silicon Power Transistors

The MJE5850, MJE5851 and the MJE5852 transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line operated switchmode applications such as:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits

Fast Turn-Off Times
100 ns Inductive Fall Time @ $25^{\circ} \mathrm{C}$ (Typ)
125 ns Inductive Crossover Time @ $25^{\circ} \mathrm{C}$ (Typ) Operating Temperature Range -65 to $+150^{\circ} \mathrm{C}$ $100^{\circ} \mathrm{C}$ Performance Specified for:

Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents

FAX: (973) 376-8960

MJE5850
 MJE5851*
 MJE5852*

Motorola Preferred Device

8 AMPERE PAP SILICON POWER TRANSISTORS 300, 350, 400 VOLTS 80 WATTS

TO-220AB

MAXIMUM RATINGS

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta J \mathrm{C}}$	1.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

(1) Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by N.I Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. N.I Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

MJE5850 MJE5851 MJE5852

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	MJE5850 MJE5851 MJE5852	$\mathrm{V}_{\text {CEO }}$ (sus)	$\begin{aligned} & 300 \\ & 350 \\ & 400 \end{aligned}$	-	-	Vdc
```Collector Cutoff Current \(\left(V_{C E V}=\right.\) Rated Value, \(V_{B E}\) (off) \(\left.=1.5 \mathrm{Vdc}\right)\) \(\left(V_{C E V}=\right.\) Rated Value, \(\mathrm{V}_{\mathrm{BE}}\) (off) \(\left.=1.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)\)```		ICEV	-	-	$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$	mAdc
Collector Cutoff Current $\left(V_{C E}=\text { Rated } V_{C E V}, R_{B E}=50 \Omega, T_{C}=100^{\circ} \mathrm{C}\right)$		ICER	-	-	3.0	mAdc
Emitter Cutoff Current $\left(V_{E B}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$		IEBO	-	-	1.0	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with base forward biased	$I_{S / b}$	See Figure 12
Clamped Inductive SOA with base reverse biased	RBSOA	See Figure 13

*ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{I} \mathrm{C}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \left(\mathrm{I} \mathrm{C}=5.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \end{aligned}$	$h_{\text {FE }}$	$\begin{gathered} 15 \\ 5 \end{gathered}$	-	-	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \qquad \begin{array}{l} \left(I_{C}=4.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{Adc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=3.0 \mathrm{Adc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}, I_{\mathrm{B}}=1.0 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	$\mathrm{V}_{\text {CE }}$ (sat)	—	-	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 2.5 \end{aligned}$	Vdc
```Base-Emitter Saturation Voltage (IC = 4.0 Adc, IB = 1.0 Adc) ( }\mp@subsup{I}{C}{}=4.0\textrm{Adc},\mp@subsup{\textrm{I}}{\textrm{B}}{}=1.0\textrm{Ado,}\mp@subsup{\textrm{T}}{\textrm{C}}{}=10\mp@subsup{0}{}{\circ}\textrm{C}```	$V_{\text {BE }}$ (sat)	-	-	1.5 1.5	$V \mathrm{dc}$

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(V_{C B}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}_{\text {test }}=1.0 \mathrm{kHz}\right)$	C_{ob}	-	270	-	pF

SWITCHING CHARACTERISTICS

Resistive Load						
Delay Time	$\begin{aligned} & \left(\mathrm{VCC}=250 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{~A},\right. \\ & \left.\mathrm{t}_{\mathrm{p}}=50 \mu \mathrm{~s}, \text { Duty } \mathrm{Cycle} \leq 2 \%\right) \end{aligned}$	t_{d}	-	0.025	0.1	$\mu \mathrm{s}$
Rise Time		tr_{r}	-	0.100	0.5	$\mu \mathrm{s}$
Storage Time	$\left(\mathrm{V}_{\mathrm{CC}}=250 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{~A}\right.$, $V_{B E(\text { off })}=5 \mathrm{Vdc}, \mathrm{t}_{\mathrm{p}}=50 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$)	t_{s}	-	0.60	2.0	$\mu \mathrm{s}$
Fall Time		tf_{f}	-	0.11	0.5	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1)						
Storage Time	$\begin{aligned} & \left(I_{C M}=4 \mathrm{~A}, \mathrm{~V}_{C E M}=250 \mathrm{~V}, I_{\mathrm{B} 1}=1.0 \mathrm{~A},\right. \\ & \left.\mathrm{V}_{\mathrm{BE} \text { (off) }}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	t_{sv}	-	0.8	3.0	$\mu \mathrm{s}$
Crossover Time		t_{c}	-	0.4	1.5	$\mu \mathrm{s}$
Fall Time		t_{fi}	-	0.1	-	$\mu \mathrm{s}$
Storage Time	$\begin{aligned} & \left(I_{\mathrm{CM}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{CEM}}=250 \mathrm{~V}, I_{\mathrm{B} 1}=1.0 \mathrm{~A},\right. \\ & \left.\mathrm{V}_{\mathrm{BE}(\mathrm{off})}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	t_{sv}	-	0.5	-	$\mu \mathrm{s}$
Crossover Time		t_{c}	-	0.125	-	$\mu \mathrm{s}$
Fall Time		$\mathrm{tfi}^{\text {f }}$	-	0.1	-	$\mu \mathrm{s}$

[^0]

[^0]: *Pulse Test: PW $=300 \mu$ s. Duty Cycle $\leq 2 \%$

