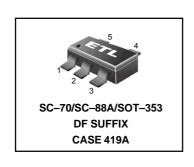
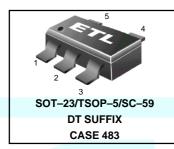
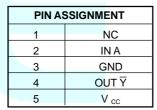


Unbuffered Inverter

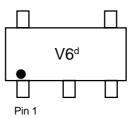
MC74VHC1GU04


The MC74VHC1GU04 is an advanced high speed CMOS Unbuffered inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.


This device consists of a single unbuffered inverter. In combination with others, or in the MC74VHCU04 Hex Unbuffered Inverter, these devices are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high–input impedance amplifier. For digital applications, the MC74VHC1G04 or the MC74VHC04 are recommended.


The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1GU04 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1GU04 to be used to interface 5 V circuits to 3 V circuits.


- High Speed: $t_{PD} = 2.5 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: I $_{CC}$ = 2 mA (Max) at T $_{A}$ = 25°C
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 105; Equivalent Gates = 26

MARKING DIAGRAMS

d = Date Code

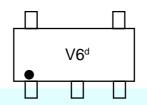


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

d = Date Code

Pin 1

FUNCTION TABLE

Inputs	Output
Α	Y
L	Н
Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHC1GU04

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{cc}	DC Supply Voltage		- 0.5 to + 7.0	V
V _{IN}	DC Input Voltage		- 0.5 to +7.0	V
V _{OUT}	DC Output Voltage	V cc=0	- 0.5 to +7.0	V
		High or Low State	-0.5 to V cc + 0.5	
I _{IK}	Input Diode Current		-20	mA
I ok	Output Diode Current	V_{out} < GND; V_{out} > V_{cc}	+20	mA
I _{OUT}	DC Output Current, per Pin		+ 25	mA
I _{cc}	DC Supply Current, V cc and GND		+50	mA
P _D	Power dissipation in still air	SC-88A, TSOP-5	200	mW
θ JA	Thermal resistance	SC-88A, TSOP-5	333	°C/W
ΤL	Lead Temperature, 1 mm from Case	for 10 s	260	°C
Т _J	Junction Temperature Under Bias		+ 150	°C
T stg	Storage temperature		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2)	>2000	V
		Machine Model (Note 3)	> 200	
		Charged Device Model (Note 4)	N/A	
I LATCH-UP	Latch-Up Performance Above V co	and Below GND at 125°C (Note 5)	± 500	mA

^{1.} Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

- 2. Tested to EIA/JESD22-A114-A
- 3. Tested to EIA/JESD22-A115-A
- 4. Tested to JESD22-C101-A
- 5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit	
V cc	DC Supply Voltage		2.0	5.5	V	
V IN	DC Input Voltage		0.0	5.5	V	
V _{OUT}	DC Output Voltage		0.0	V cc	V	
TA	Operating Temperature Range		– 55	+ 125	°C	
tr,tf	Input Rise and Fall Time	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	0	No Limit	ns/V	
		$V_{CC} = 5.0 \pm 0.5 V$	0	No Limit		

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

TIME TO 0.1 /0 BOND TAILORES										
Junct	tion	Time,	Time,							
Tempera	ture °C	Hours	Years							
80)	1,032,200	117.8							
90)	419,300	47.9							
100	0	178,700	20.4							
110	0	79,600	9.4							
120	0	37,000	4.2							
130	0	17,800	2.0							
140	0	8,900	1.0							

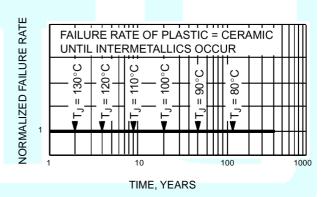


Figure 3. Failure Rate vs. Time Junction Temperature

MC74VHC1GU04

DC ELECTRICAL CHARACTERISTICS

			V cc	T _A = 25 °C		$T_A \leq 85^{\circ}C$ -55°C $\leq T_A \leq$			Γ _A ≤125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level		2.0	1.7			1.7		1.7		V
	Input Voltage		3.0	2.4			2.4		2.4		
			4.5	3.6			3.6		3.6		
			5.5	4.4			4.4		4.4		
V _{IL}	Maximum Low-Level		2.0			0.3		0.3		0.3	V
	Input Voltage		3.0			0.6		0.6		0.6	
			4.5			0.9		0.9		0.9	
			5.5			1.1		1.1		1.1	
V _{OH}	Minimum High-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0	1.9	2.0		1.9		1.9		V
	Output Voltage	$I_{OH} = -50 \mu A$	3.0	2.9	3.0		2.9		2.9		
	$V_{IN} = V_{IH} \text{ or } V_{IL}$		4.5	4.4	4.5		4.4		4.4		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$									
		$I_{OH} = -4 \text{ mA}$	3.0	2.58			2.48		2.34		
		$I_{OH} = -8 \text{ mA}$	4.5	3.94			3.80		3.66		
V _{OL}	Maximum Low-Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0		0.0	0.1		0.1		0.1	V
	Output Voltage	$I_{OL} = 50 \mu A$	3.0		0.0	0.1		0.1		0.1	
	$V_{IN} = V_{IH} \text{ or } V_{IL}$		4.5		0.0	0.1		0.1		0.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$									
		$I_{OL} = 4 \text{ mA}$	3.0			0.36		0.44		0.52	
		$I_{OL} = 8 \text{ mA}$	4.5			0.36		0.44		0.52	
I _{IN}	Maximum Input	$V_{IN} = 5.5 V \text{ or GND}$	0 to5.5			±0.1		±1.0		±1.0	μА
	Leakage Current										
I _{cc}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μΑ
	Supply Current										

AC ELECTRICAL CHARACTERISTICS C $_{load}$ = 50 pF, Input t $_{\rm f}$ = 1.0 ns

				T _A = 25 °C		T _A ≤	85 °C	-55°C≤	Γ _A ≤125°C		
Symbol	Parameter	Test Conditions		Min	Тур	Max	Min	Max	Min	Max	Unit
t PLH,	Maximum	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	C _L = 15 pF		3.5	8.9		10.5		12.0	ns
t _{PHL}	Propagation Delay,		C _L = 50 pF		4.8	11.4		13.0		15.5	
	Input A or B to \overline{Y}										
		$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF		2.5	5.5		6.5		8.0	
			C _L = 50 pF		3.8	7.0		8.0		9.5	
C IN	Maximum Input				4	10		10		10	pF
	Capacitance										
		Турі	cal @ 2	25°C, V	cc = 5. () V					
C PD	Power Dissipation Capacitance (Note 6)					22					pF

^{6.} C $_{PD}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \bullet C_{PD}$ is used to determine the noload dynamic power consumption; $P_{D} = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

MC74VHC1GU04

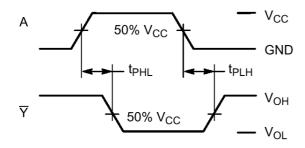
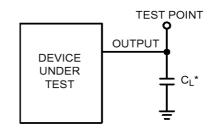
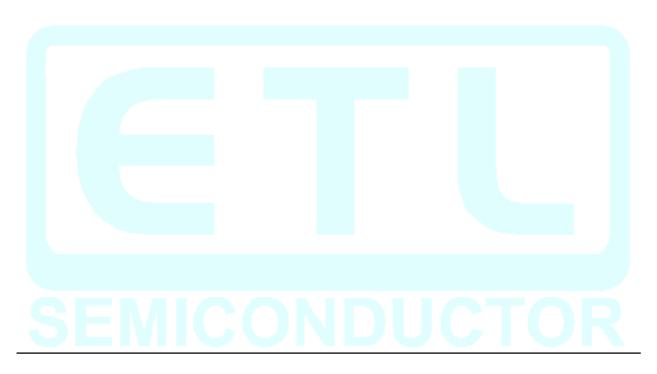



Figure 4. Switching Waveforms



*Includes all probe and jig capacitance

Figure 5. Test Circuit

DEVICE ORDERING INFORMATION

			Device						
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type (Name/SOT#/ Common Name)	Tape and Reel Size	
MC74VHC1GU04DFT1	МС	74	VHC1G	U04	DF	T1	SC-70/SC-88A/	178 mm (7 in)	
							SOT-353	3000 Unit	
MC74VHC1GU04DFT2	MC	74	VHC1G	U04	DF	T2	SC-70/SC-88A/	178 mm (7 in)	
							SOT-353	3000 Unit	
MC74VHC1GU04DFT4	MC	74	VHC1G	U04	DF	T4	SC-70/SC-88A/	330 mm (13 in)	
							SOT-353	10,000 Unit	
MC74VHC1GU04DTT1	MC	74	VHC1G	U04	DT	T1	SOT-23/TSOPS/	178 mm (7 in)	
							SC-59	3000 Unit	
MC74VHC1GU04DTT3	MC	74	VHC1G	U04	DT	T3	SOT-23/TSOPS/	330 mm (13 in)	
							SC-59	10,000 Unit	

