2-Input AND Gate

MC74VHC1G08

The MC74VHC1G08 is an advanced high speed CMOS 2-input AND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power issipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.
The MC74VHC1G08 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1G08 to be used to interface 5 V circuits to 3 V circuits.

- High Speed: $t_{p d}=3.5 \mathrm{~ns}$ (Typ) at $\mathrm{V} \mathrm{cc}=5 \mathrm{~V}$
- Low Power Dissipation: $I_{c c}=2 \mathrm{~mA}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 62; Equivalent Gates = 15

TSOP-5/SOT-23/SC-59 DT SUFFIX
CASE 483

MARKING DIAGRAMS

Pin 1
d = Date Code

Pin 1
d = Date Code

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT	
1	IN B
2	IN A
3	GND
4	OUT $\overline{\mathrm{Y}}$
5	$\mathrm{~V}_{\mathrm{cc}}$

FUNCTION TABLE

Inputs		Output
A	B	$\overline{\mathbf{Y}}$
L	L	L
L	H	L
H	L	L
H	H	H

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHC1G08

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to 7.0	V
V out	DC Output Voltage $\mathrm{V}_{\mathrm{cc}=0}$	-0.5 to 7.0	V
	High or Low State	-0.5 to V cc +0.5	
$\mathrm{I}_{\text {IK }}$	Input Diode Current	-20	mA
I ок	Output Diode Current $\mathrm{V}_{\text {out }}<\mathrm{GND} ; \mathrm{V}_{\text {out }}>\mathrm{V}_{\text {cc }}$	+20	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current, per Pin	+25	mA
1 cc	DC Supply Current, V cc and GND	+50	mA
P_{D}	Power dissipation in still air SC-88A, TSOP-5	200	mW
$\theta_{\text {JA }}$	Thermal resistance SC-88A, TSOP-5	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{L}	Lead Temperature, 1 mm from Case for 10 s	260	${ }^{\circ} \mathrm{C}$
T J	Junction Temperature Under Bias	+ 150	${ }^{\circ} \mathrm{C}$
T stg	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2)	>2000	V
	Machine Model (Note 3)	> 200	
	Charged Device Model (Note 4)	N/A	
$\mathrm{I}_{\text {Latch-up }}$	Latch-Up Performance Above V cc and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max
V_{cc}	DC Supply Voltage	2.0	5.5	V U
V_{IN}	DC Input Voltage		0.0	5.5
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0.0	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range		-55	+125
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{cc}}=3.3 \pm 0.3 \mathrm{~V}$	0	V
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	0	100

DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathrm{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

MC74VHC1G08
DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{V}_{\text {IH }}$	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{array}{\|c\|} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{array}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
$\mathrm{V}_{\text {он }}$	Minimum High-Level Output Voltage$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {он }}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {OH }}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.58 \\ 3.94 \\ \hline \end{array}$			$\begin{aligned} & 2.48 \\ & 3.80 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.34 \\ & 3.66 \\ & \hline \end{aligned}$		
V oL	Maximum Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{oL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\left\|\begin{array}{l} 0.44 \\ 0.44 \end{array}\right\|$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	0 to5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I cc	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {cc }}$ or GND	5.5			2.0		20		40	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $C_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$,	Maximum	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		4.1	8.8		10.5		12.5	ns
$t_{\text {PHL }}$	Propogation Delay, Input A or B to Y	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5.9	12.3		14.0		16.5	
		$\mathrm{V}_{\text {cc }}=5.0 \pm 0.5 \mathrm{~V} \quad \mathrm{C}_{\text {L }}=15 \mathrm{pF}$		3.5	5.9		7.0		9.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.2	7.9		9.0		11.0	
$\mathrm{C}_{\text {ın }}$	Maximum Input Capacitance			5.5	10		10		10	pF
			Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$							
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 6)		11						pF	

6. $C_{\text {PD }}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \cdot V_{C C} \cdot f_{\text {in }}+I_{C C} . C_{P D}$ is used to determine the noload dynamic power consumption; $P_{D}=C_{P D} \cdot V_{c c}{ }^{2} \cdot f_{i n}+I_{c C} \cdot V_{c c}$.

MC74VHC1G08

Figure 4. Switching Waveforms

*Includes all probe and jig capacitance
Figure 5. Test Circuit

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature						Package Type (Name/SOT\#/ Common Name)	Tape and Reel Size
	Logic Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape and Reel Suffix		
MC74VHC1G08DFT1	MC	74	VHC1G	08	DF	T1	$\begin{gathered} \hline \text { SC-70/SC-88A/ } \\ \text { SOT-353 } \end{gathered}$	$\begin{gathered} 178 \mathrm{~mm} \text { (7 in) } \\ 3000 \text { Unit } \end{gathered}$
MC74VHC1G08DFT2	MC	74	VHC1G	08	DF	T2	$\begin{gathered} \hline \text { SC-70/SC-88A/ } \\ \text { SOT-353 } \end{gathered}$	$\begin{gathered} 178 \mathrm{~mm}(7 \mathrm{in}) \\ 3000 \text { Unit } \\ \hline \end{gathered}$
MC74VHC1G08DFT4	MC	74	VHC1G	08	DF	T4	$\begin{gathered} \hline \text { SC-70/SC-88A/ } \\ \text { SOT-353 } \\ \hline \end{gathered}$	$\begin{gathered} 330 \mathrm{~mm}(13 \mathrm{in}) \\ 10,000 \text { Unit } \\ \hline \end{gathered}$
MC74VHC1G08DTT1	MC	74	VHC1G	08	DT	T1	$\begin{gathered} \hline \text { SOT-23/TSOPS } / \\ \text { SC-59 } \end{gathered}$	$\begin{gathered} 178 \mathrm{~mm}(7 \mathrm{in}) \\ 3000 \text { Unit } \end{gathered}$
MC74VHC1G08DTT3	MC	74	VHC1G	08	DT	T3	$\begin{gathered} \hline \text { SOT-23/TSOPS/ } \\ \text { SC-59 } \end{gathered}$	$\begin{aligned} & 330 \mathrm{~mm} \text { (13 in) } \\ & 10,000 \text { Unit } \end{aligned}$

