Single 2-Input NAND Gate with Open Drain Output

The MC74VHC1G01 is an advanced high speed CMOS 2-input NAND gate with an open drain output fabricated with silicon gate CMOS technology.

The internal circuit is composed of multiple stages, including an open drain output which provides the ability to set output switching level. This allows the MC74VHC1G01 to be used to interface 5 V circuits to circuits of any voltage between V_{CC} and 7 V using an external resistor and power supply.

The MC74VHC1G01 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{PD} = 3.7 \text{ ns (Typ)}$ at $V_{CC} = 5 \text{ V}$
- Low Internal Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 62
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

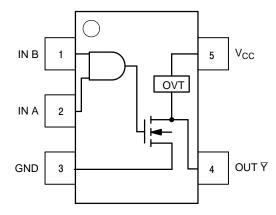


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

SC-88A / SOT-353 / SC-70
DF SUFFIX
CASE 419A

TSOP-5 / SOT-23 / SC-59
DT SUFFIX
CASE 483

V0 = Device Code M = Date Code* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT				
1	IN B			
2	IN A			
3	GND			
4	OUT ₹			
5	V _{CC}			

FUNCTION TABLE

Inp	uts	Output
Α	В	Y
L	L	Z
L	Н	Z
н	L	Z
Н	Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol		Parameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current		-20	mA
I _{OK}	DC Output Diode Current	$V_{OUT} < GND; V_{OUT} > V_{CC}$	±20	mA
I _{OUT}	DC Output Sink Current, per Pin		25	mA
I _{CC}	DC Supply Current, V _{CC} and GND P	in	± 25	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case	for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance	SC70-5/SC-88A (Note 1) TSOP-5	350 230	°C/W
P _D	Power Dissipation in Still Air at 85°C	SC70-5/SC-88A TSOP-5	150 200	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 200 N/A	V
I _{LATCHUP}	Latchup Performance	Above V _{CC} and Below GND at 125°C (Note 5)	±500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics			Max	Unit
V _{CC}	DC Supply Voltage			5.5	V
V _{IN}	DC Input Voltage		0.0	5.5	V
V _{OUT}	DC Output Voltage		0.0	7.0	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time VCC	$z = 3.3 \text{ V} \pm 0.3 \text{ V}$ $z = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

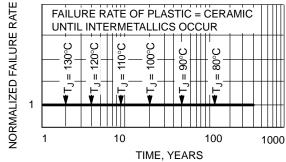


Figure 3. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	7	Γ _A = 25°(C	T _A ≤	85°C	−55°C 125	≤ T _A ≤ 5°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OL}	Maximum Low-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu\text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH}$ or V_{IL} $I_{OL} = 4$ mA $I_{OL} = 8$ mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{LKG}	Z-State Output Leakage Current	$V_{IN} = V_{IL}$ $V_{OUT} = V_{CC}$ or GND	5.5			±5		±10		± 10	μΑ
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			1.0		20		40	μΑ
I _{OFF}	Power Off–Output Leakage Current	V _{OUT} = 5.5 V V _{IN} = 5.5 V	0			0.25	_	2.5		5	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS Input $t_{\text{r}} = t_{\text{f}} = 3.0 \text{ ns}$

				T _A = 25°C		T _A ≤	85°C	-55 ≤ T _A	≤ 125°C	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PZL}	Maximum Output Enable Time,	$V_{CC} = 3.3 \pm 0.3 \text{ VC}_{L} = 15 \text{ pF}$ $R_{L} = R_{I} = 500 \Omega C_{L} = 50 \text{ pF}$		5.5 8.0	7.9 11.4		9.5 13.0		11.0 15.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 \text{ VC}_L = 15 \text{ pF}$ $R_L = R_I = 500 \Omega C_L = 50 \text{ pF}$		3.7 5.2	5.5 7.5		6.5 8.5		8.0 10.0	
t _{PLZ}	Maximum Output Disable Time	$V_{CC} = 3.3 \pm 0.3 \text{ V C}_{L} = 50 \text{ pF}$ $R_{L} = R_{I} = 500 \Omega$		8.0	11.4		13.0		15.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V C}_{L} = 50 \text{ pF}$ $R_{L} = R_{I} = 500 \Omega$		5.2	7.5		8.5		10.0	
C _{IN}	Maximum Input Capacitance			4	10		10		10	pF

		Typical @ 25°C, V _{CC} = 5.0V		١
C_{PD}	Power Dissipation Capacitance (Note 6)	18	pF	١

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

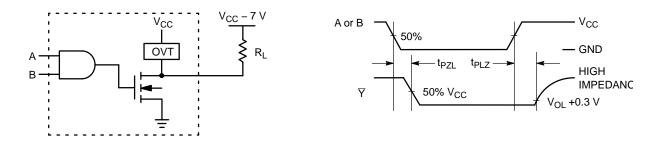
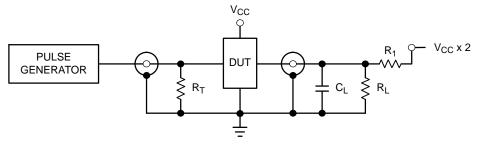
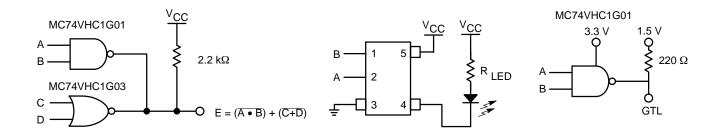



Figure 4. Output Voltage Mismatch Application

Figure 5. Switching Waveforms



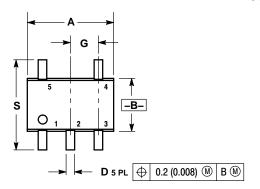
C_L = 50 pF equivalent (Includes jig and probe capacitance)

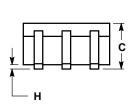
 $R_L = R_1 = 500 \Omega$ or equivalent

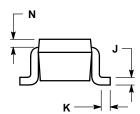
 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 6. Test Circuit

ORDERING INFORMATION

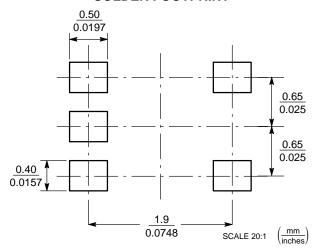

Device	Package	Shipping [†]
MC74VHC1G01DFT1G		
NLV74VHC1G01DFT1G*	SC-88A / SC70-5 / SOT-353 (Pb-Free)	3000 Units / Tape & Reel
MC74VHC1G01DFT2G	(/	
MC74VHC1G01DTT1G	TSOP-5 / SOT23-5 / SC59-5	3000 Units / Tape & Reel
NLV74VHC1G01DTT1G*	(Pb-Free)	3000 Offics / Tape & Reef


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

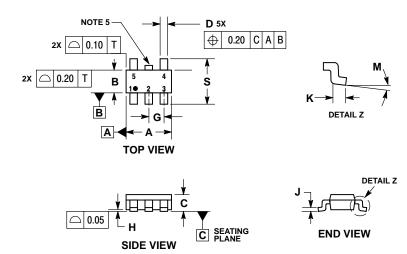

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SC-88A CASE 419A-02 ISSUE L



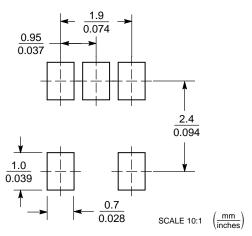
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65	BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

SOLDER FOOTPRINT

PACKAGE DIMENSIONS

TSOP-5 CASE 483-02 ISSUE M


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994
- Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS, MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL

 DIMENSIONS A AND B DO NOT INCLUDE MOLD
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
U	0.90	1.10		
D	0.25	0.50		
G	0.95	BSC		
Н	0.01	0.10		
7	0.10	0.26		
K	0.20	0.60		
М	0 °	10°		
s	2.50	3.00		

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

0

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative