2-Input NAND Gate with
 Open Drain Output

MC74VHC1G01

The MC74VHC1G01 is an advanced high speed CMOS 2-input NAND gate with an open drain output fabricated with silicon gate CMOS technology. It achieves high speed peration similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the ability to set output switching level. This allows the MC74VHC1G01 to be used to interface 5 V circuits to circuits of any voltage between V cc and 7 V using an external resistor and power supply.

The MC74VHC1G01 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage.

- High Speed: $\mathrm{t}_{\mathrm{PD}}=3.7 \mathrm{~ns}$ (Typ) at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
- Low Internal Power Dissipation: $I_{C C}=2 \mathrm{~mA}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 62; Equivalent Gates = 16

MARKING DIAGRAMS

Pin 1
d = Date Code

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT	
1	IN B
2	IN A
3	GND
4	OUT $\overline{\mathrm{Y}}$
5	$\mathrm{~V}_{\mathrm{cc}}$

FUNCTION TABLE

Inputs		Output
\mathbf{A}	\mathbf{B}	$\overline{\mathbf{Y}}$
L	L	Z
L	H	Z
H	L	Z
H	H	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHC1G00

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V cc	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to 7.0	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage	-0.5 to 7.0	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current	-20	mA
I ок	DC Output Diode Current $\quad \mathrm{V}_{\text {out }}<\mathrm{GND} ; \mathrm{V}_{\text {out }}>\mathrm{V}_{\mathrm{cc}}$	+20	mA
$\mathrm{I}_{\text {out }}$	DC Output Sink Current	+25	mA
$\mathrm{I}_{\text {cc }}$	DC Supply Current per Supply Pin	+50	mA
P_{D}	Power dissipation in still air SC-88A, TSOP-5	200	mW
$\theta_{\text {JA }}$	Thermal resistance SC-88A, TSOP-5	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2)	>2000	V
	Machine Model (Note 3)	> 200	
	Charged Device Model (Note 4)	N/A	
$\mathrm{I}_{\text {LATCH-UP }}$	Latch-Up Performance Above V_{cc} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{cc}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage		0.0	5.5
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0.0	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range		-55	7.0
$\mathrm{t}_{\mathrm{r},}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{cc}}=3.3 \pm 0.3 \mathrm{~V}$	0	V
		$\mathrm{~V}_{\mathrm{cC}}=5.0 \pm 0.5 \mathrm{~V}$	0	125
${ }^{\circ} \mathrm{C}$				

DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathrm{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

MC74VHC1G01
DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{array}{c\|} \hline V_{\mathrm{cc}} \\ \mathrm{~V}) \end{array}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{V}_{\text {H }}$	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{array}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{array}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V
V он	Minimum High-Level Output Voltage$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \\ & \mathrm{I}_{\text {OH }}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {OH }}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\text {OH }}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.58 \\ 3.94 \\ \hline \end{array}$			$\begin{array}{\|l} 2.48 \\ 3.80 \\ \hline \end{array}$		$\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$		
V oL	Maximum Low-Level Output Voltage$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{oL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$		$\left\|\begin{array}{l} 0.44 \\ 0.44 \end{array}\right\|$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	0 to5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I cc I OPD	Maximum Quiescent Supply Current Maximum Off-state Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}=\mathrm{V}_{\mathrm{CC}} \text { or GND }} \\ & \mathrm{V} \text { OUT }=5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.5 \\ 0 \end{gathered}$			$\begin{aligned} & 2.0 \\ & 0.25 \end{aligned}$		$\begin{aligned} & 20 \\ & 2.5 \end{aligned}$		40 5.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $C_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
t PZL	Maximum Output Enable Time, Input A or B to Y	$\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V} \mathrm{CL}=15 \mathrm{pF}$		5.5	7.9		9.5		11.0	ns
		$R \mathrm{~L}=\mathrm{RI}=500 \Omega \quad \mathrm{CL}=50 \mathrm{pF}$		8.0	11.4		13.0		15.5	
		$\begin{array}{ll} \mathrm{VCC}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{CL}=15 \mathrm{pF} \\ \mathrm{RL}=\mathrm{RI}=500 \Omega & \mathrm{CL}=50 \mathrm{pF} \\ \hline \end{array}$		$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	
t PLZ	Maximum Output Disable Time	$\begin{array}{ll} \mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{CL}=50 \mathrm{pF} \\ \mathrm{RL}=\mathrm{RI}=500 \Omega & \end{array}$		8.0	11.4		13.0		15.5	ns
		$\begin{aligned} & \mathrm{VCC}=5.0 \pm 0.5 \mathrm{VCL}=50 \mathrm{pF} \\ & \mathrm{R} L=\mathrm{R} \mathrm{I}=500 \Omega \end{aligned}$		5.2	7.5		8.5		10.0	
C IN	Maximum Input Capacitance			4	10		10		10	pF

		Typical @ $25^{\circ} \mathrm{C}, \mathbf{V} \mathrm{cc}=5.0 \mathrm{~V}$	
C_{PD}	Power Dissipation Capacitance (Note 6)	18	pF

6. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} X V_{C C} X f_{\text {in }}+I_{C C} . C_{P D}$ is used to determine the noload dynamic power consumption; $P_{D}=C_{P D} X V C^{2} X f_{i n}+I_{c c} X V C c$.

MC74VHC1G01

Figure 4. Output Voltage Mismatch Application

Figure 5. Switching Waveforms

Figure 6. Test Circuit

Figure 7. Complex Boolean Functions

MC74VHC1G01

Figure 9. GTL Driver

DEVICE ORDERING INFORMATION

Device Nomenclature								
Device Order Number	Logic Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape and Reel Suffix	Package Type (Name/SOT\#/ Common Name)	Tape and Reel Size
MC74VHC1G01DFT1	MC	74	VHC1G	01	DF	T1	$\begin{gathered} \text { SC-70/SC-88A/ } \\ \text { SOT-353 } \end{gathered}$	$\begin{gathered} 178 \mathrm{~mm}(7 \mathrm{in}) \\ 3000 \text { Unit } \end{gathered}$
MC74VHC1G01DFT2	MC	74	VHC1G	01	DF	T2	$\begin{gathered} \hline \text { SC-70/SC-88A/ } \\ \text { SOT-353 } \end{gathered}$	$\begin{gathered} 178 \mathrm{~mm} \text { (7 in) } \\ 3000 \text { Unit } \end{gathered}$
MC74VHC1G01DFT4	MC	74	VHC1G	01	DF	T4	$\begin{gathered} \hline \text { SC-70/SC-88A/ } \\ \text { SOT-353 } \\ \hline \end{gathered}$	$\begin{gathered} 330 \mathrm{~mm}(13 \mathrm{in}) \\ 10,000 \text { Unit } \\ \hline \end{gathered}$
MC74VHC1G01DTT1	MC	74	VHC1G	01	DT	T1	$\begin{gathered} \hline \text { SOT-23/TSOPS } / \\ \text { SC-59 } \end{gathered}$	$\begin{gathered} 178 \mathrm{~mm} \text { (7 in) } \\ 3000 \text { Unit } \end{gathered}$
MC74VHC1G01DTT3	MC	74	VHC1G	01	DT	T3	$\begin{gathered} \hline \text { SOT-23/TSOPS } / \\ \text { SC-59 } \end{gathered}$	$\begin{gathered} 330 \mathrm{~mm}(13 \mathrm{in}) \\ 10,000 \text { Unit } \end{gathered}$

