OCTAL REGISTERED TRANSCEIVER, NON-INVERTING, 3-STATE

The MC74F543 Octal Registered Transceivers contain two sets of data flowing in either direction. Separate Latch Enable ($\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}$) and Enable ($\overline{O E A B}, \overline{O E B A}$) inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The MC74F543 has a noninverting data path. The A outputs are guaranteed to sink 20 mA while the B outputs are rated for 64 mA .

- Combines 74F245 and 74F373 Type Functions in One Chip
- 8-Bit Octal Transceiver
- Non-Inverting
- Back-to-Back Registers for Storage
- Separate Controls for Data Flow in Each Direction
- Glitchless Outputs During 3-State Power Up or Power Down Operation
- High Impedance Outputs in Power Off State
- A Outputs Sink 24 mA and Source 3.0 mA
- B Outputs Sink 64 mA and Source 15 mA
- See F544 for Inverting Version
- ESD Protection > 4000 Volts

PIN ASSIGNMENT

MC74F543

OCTAL REGISTERED
 TRANSCEIVER, NON-INVERTING, 3-STATE
 FAST™ ${ }^{\text {™ }}$ SCHOTTKY TTL

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	74	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High	74			$-3.0 /-15$	mA
I_{OL}	Output Current - Low	74			$24 / 64$	mA

MC74F543

FUNCTION TABLE

Inputs					Sutputs

$\mathrm{H}=\mathrm{HIGH}$ voltage level: $\mathrm{h}=\mathrm{HIGH}$ state must be present one set-up time before the LOW-to-HIGH transition of LEXX or EXX (XX = AB or BA): L = LOW Voltage Level: $I=L O W$ state must be present one set-up time before the LOW-to-HIGH transition of LEXX or EXX (XX = AB or BA): $X=$ Don't care: $Z=H I G H$ impedance state.

FUNCTIONAL DESCRIPTION

The MC74F543 contains two sets of eight D-type latches, with separate input and controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{\mathrm{EAB}}$) Input must be LOW in order to enter data from A0-A7 or take data from B0-B7, as indicated in the Function Table. With EAB LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH
transition of the $\overline{\mathrm{LEAB}}$ signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{E A B}$ and $\overline{O E A B}$ both LOW, the 3 -State B output buffers are active and reflects the data present at the output of the A latches. Control of data flow from B to A is similar, but using the EBA, $\overline{L E B A}$, and OEBA inputs.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter			Limits			Unit	Test Conditions				
				Min	Typ	Max						
V_{IH}	Input HIGH Voltage			2.0			V	Guaranteed Input	IGH Voltage			
V_{IL}	Input LOW Voltage					0.8	V	Guaranteed Inp	OW Voltage			
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage				-0.73	-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$ IN	18 mA			
V_{OH}	Output HIGH Voltage	A0-A7	74	2.4			V	$\mathrm{IOH}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			
				2.7	3.4				$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			
		B0-B7	74	2.0			V	$\mathrm{IOH}=-15 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			
VOL	Output LOW Voltage	A0-A7	74		0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			
		B0-B7	74		0.4	0.55	V	$\mathrm{IOL}=64 \mathrm{~mA}$				
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current		I/O Pins			1.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				
			Control Pins			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$				
					20	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$						
IIL	Input LOW Current			EAB, EBA				-1.2	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		
			Other Inputs			-0.6						
IOZH	Off-State Output Current, High-Level Voltage Applied					70	$\mu \mathrm{A}$	$V_{C C}=$ MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$			
						1.0	mA		$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			
IOZL	Off-State Output Current, Low-Level Voltage Applied					-600	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$				
IOS	Output Short Circuit Current (Note 2)		A_{n} Outputs	-60		-150	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$				
			B_{n} Outputs	-100		-225						
ICC	Total Supply Current		ICCH		70	100	mA	$V_{C C}=M A X$				
			ICCL		95	125						
			ICCZ		95	125						

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter		74F				Unit
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum Clock Frequency	70	100		70		MHz
tpLH tpHL	Propagation Delay Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay LEBA to A_{n}	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	ns
tpLH tpHL	Propagation Delay LEAB to B_{n}	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to OEBA or OEAB to A_{n} or B_{n} $\overline{E B A}$ or $\overline{E A B}$ to A_{n} or B_{n}	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	ns
$\begin{aligned} & \text { tphZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time to OEBA or OEAB to A_{n} or B_{n} $\overline{E B A}$ or $\overline{E A B}$ to A_{n} or B_{n}	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns

AC OPERATING REQUIREMENTS

Symbol	Parameter	74F			74F			Unit
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}(\mathrm{H})} \\ & \mathrm{t}_{\mathbf{s}(\mathrm{L})} \end{aligned}$	Setup Time, HIGH or LOW A_{n} or B_{n} to LEBA or LEAB	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			ns
$\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold Time, HIGH or LOW A_{n} to B_{n} to $\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			ns
${ }^{\text {w }}$ (L)	Latch Enable, B to A Pulse Width, LOW	8.0			9.0			ns

MC74F543

