8-INPUT SHIFT/STORAGE REGISTER WITH SYNCHRONOUS RESET AND COMMON I/O PINS

The MC74F323 is an 8-Bit Universal Shift/Storage Register with 3-state outputs. Its function is similar to the F299 with the exception of Synchronous Reset.
The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy cascading. A separate active LOW Master Reset is used to reset the register.
Four modes of operation are possible: hold (store), shift left, shift right and parallel load. All modes are activated on the LOW-to-HIGH transition of the clock.

- Common I/O For Reduced Pin Count
- Four Operation Modes: Shift Left, Shift Right, Parallel Load and Store
- Separate Continuous Inputs and Outputs from Q_{0} and Q_{7} Allow Easy Cascading
- Fully Synchronous Reset
- 3-State Outputs for Bus Oriented Applications
- Input Clamp Diodes Limit High-Speed Termination Effects

CONNECTION DIAGRAM

MC74F323

8-INPUT SHIFT/STORAGE REGISTER WITH SYNCHRONOUS RESET AND COMMON I/O PINS

FAST ${ }^{\text {тм }}$ SCHOTTKY TTL

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit	
V_{CC}	Supply Voltage	74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	74	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High	74			$-1.0 /-3.0$	mA
I_{OL}	Output Current - Low	74			$20 / 24$	mA

FUNCTION TABLE

Inputs				Response
SR	S_{1}	S_{0}	CP	
L	X	X	\uparrow	Synchronous Reset: $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ LOW
H	H	H	\uparrow	Parallel Load: $1 / O_{n} \quad Q_{n}$
H	L	H	\uparrow	Shift Right: $\mathrm{DS}_{0} \quad \mathrm{Q}_{0}, \mathrm{Q}_{0} \quad \mathrm{Q}_{1}$, etc.
H	H	L	\uparrow	Shift Left: DS ${ }_{7} \quad \mathrm{Q}_{7}, \mathrm{Q}_{7} \quad \mathrm{Q}_{6}$, etc.
H	L	L	X	Hold

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\uparrow=$ LOW-to-HIGH clock transition.

FUNCTIONAL DESCRIPTION

The MC74F323 contains eight edge-triggered D-type flips-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Function Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{\mathrm{SR}}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other
state changes are initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended set-up and hold times, relative to the rising edge of CP , are observed.

A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3 -state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise specified)

Symbol	Parameter			Limits			Unit	Test Conditions		
				Min	Typ	Max				
V_{IH}	Input HIGH Voltage			2.0			V	Guaranteed Inp	HIGH Voltage	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.8	V	Guaranteed Inp	OW Voltage	
VIK	Input Clamp Diode Voltage					-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$ IN	18 mA	
VOH	Output HIGH Voltage	$\mathrm{Q}_{0} / \mathrm{Q}_{7}$	74	2.5			V	$\mathrm{l} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	
			74	2.7					$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	
		I/O	74	2.7	3.4		V	$\mathrm{IOH}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	
			74	2.4					$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	
VOL	Output LOW Voltage		$\mathrm{Q}_{0} / \mathrm{Q}_{7}$			0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	
			I/O			0.5		$\mathrm{IOL}=24 \mathrm{~mA}$		
${ }^{1} \mathrm{H}$	Input HIGH Current		$\mathrm{Q}_{0} / \mathrm{Q}_{7}$			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
			I/O			70				
			$\mathrm{Q}_{0} / \mathrm{Q}_{7}$			0.1	mA	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
			I/O			1.0			$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	
IIL	Input LOW Current		$\mathrm{s}_{0}, \mathrm{~S}_{1}$			-1.2	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		
			Other Inputs			-0.6				
IOZH	Off-State Output Current, High-Level Voltage Applied					70	$\mu \mathrm{A}$	$V_{C C}=$ MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	
						1.0	mA		$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	
${ }^{\text {I OZL }}$	Off-State Output Current, Low-Level Voltage Applied					-0.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		
IOS	Output Short Circuit Current (Note 2)			-60		-150	mA	$V_{C C}=$ MAX	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
ICC	Total Supply Current					95	mA		Outputs Disabled	

NOTES:

1. For conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions for the applicable device type.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter					Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		
		Min	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum Input Frequency	70		70		MHz
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to Q_{0} or Q_{7}	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 12 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time to HIGH or LOW Level	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11 \end{gathered}$	ns
tphZ tPLZ	Output Disable Time to HIGH or LOW Level	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

Symbol	Parameter	74F			74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{s}(\mathrm{~L})} \end{aligned}$	Set-Up Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		ns
$\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{s}(\mathrm{~L})} \end{aligned}$	Set-Up Time, HIGH or LOW I/On, $\mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \hline \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW I/On, DS ${ }_{0}, \mathrm{DS}_{7}$ to CP	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{s}(\mathrm{~L})} \end{aligned}$	Set-Up Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$			$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$		ns
$\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \left.\mathrm{t}_{\mathrm{w}}^{\mathrm{w}} \mathrm{H}\right) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width, HIGH or LOW	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		ns

