For:char
Printed on:Mon, Feb 6, 1995 09:32:08
From book:DL121CH4 (5) VIEW
Document:MC74F283 (5) VIEW
Last saved on:Fri, Feb 3, 1995 16:03:54
motorola

4-BIT BINARY FULL ADDER (With Fast Carry)

The MC54/74F283 high-speed 4-bit binary full adder with internal carry lookahead, accepts two 4-bit binary words ($\mathrm{A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}$) and a Carry input $\left(\mathrm{C}_{0}\right)$. It generates the binary Sum outputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and the Carry output (C_{4}) from the most significant bit. The F283 will operate with either active-HIGH or active-LOW operands (positive or negative logic).

FUNCTIONAL DESCRIPTION
The F283 adds two 4-bit binary words (A plus B) plus the incoming carry C_{0}. The binary sum appears on the Sum $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and outgoing carry $\left(\mathrm{C}_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$
\begin{aligned}
& 2^{0}\left(A_{0}+B_{0}+C_{0}\right)+2^{1}\left(A_{1}+B_{1}\right)+2^{2}\left(A_{2}+B_{2}\right)+2^{3}\left(A_{3}+B_{3}\right) \\
& =S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4} \\
& \text { Where }(+)=\text { plus }
\end{aligned}
$$

Interchanging inputs of equal weight does not affect the operation. Thus C_{0}, A_{0}, B_{0} can be arbitrarily assigned to pins 5,6 and 7 . Due to the symmetry of the binary add function, the F283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). See Figure A. Note that if C_{0} is not used it must be tied LOW for active-HIGH logic or tied HIGH for active-LOW logic.
Due to pin limitations, the intermediate carries of the F283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure B shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder ($\mathrm{A}_{3}, \mathrm{~B}_{3}$) LOW makes S_{3} dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure C shows a way of dividing the F283 into a 2-bit and a 1-bit adder. The third stage adder (A_{2}, $\left.\mathrm{B}_{2}, \mathrm{~S}_{2}\right)$ is used merely as a means of getting a carry $\left(\mathrm{C}_{10}\right)$ signal into the fourth stage (via A_{2} and B_{2}) and bringing out the carry from the second stage on S_{2}. Note that as long as A_{2} and B_{2} are the same, whether HIGH or LOW, they do not influence S_{2}. Similarly, when A_{2} and B_{2} are the same the carry into the third stage does not influence the carry out of the third stage. Figure D shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs S_{0}, S_{1} and S_{2} present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure E shows one method of implementing a 5 -input majority gate. When three or more of the inputs $\mathrm{I}_{1}-\mathrm{I}_{5}$ are true, the output M_{5} is true.

CONNECTION DIAGRAM

MC54/74F283

4-BIT BINARY FULL ADDER (With Fast Carry)

FAST ${ }^{\text {м }}$ SCHOTTKY TTL

LOGIC DIAGRAM

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54, 74	4.5	5.0	5.5	V
TA	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
${ }^{\mathrm{I}} \mathrm{H}$	Output Current - High	54, 74	-	-	-1.0	mA
${ }^{\text {IOL}}$	Output Current - Low	54, 74	-	-	20	mA

Figure A. Active-HIGH versus Active-LOW Interpretation

	C_{0}	A_{0}	A_{1}	A_{2}	A_{3}	B_{0}	B_{1}	B_{2}	B3	S_{0}	S_{1}	S_{2}	S3	C_{4}
Logic Levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Figure B. 3-Bit Adder

Figure D. 5-Input Encoder

Figure C. 2-Bit and 1-Bit Adders

Figure E. 5-Input Majority Gate

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V	Guaranteed In	GH Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	Guaranteed In	W Voltage
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage				-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
VOH	Output HIGH Voltage	54, 74	2.5	3.4		V	$\mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
		74	2.7	3.4		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage			0.35	0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
${ }_{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	$V_{C C}=M A X$
					100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
IIL	Input LOW Current C_{0} Input A and B Inputs				-0.6	mA	$\mathrm{VIN}=0.5 \mathrm{~V}$	$V C C=$ MAX
					-1.2	mA		
los	Output Short Circuit Current (Note 2)		-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$V_{C C}=$ MAX
ICC	Power Supply Current			36	55	mA	Inputs $=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. For conditions such as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

MC54/74F283

AC CHARACTERISTICS

Symbol	Parameter	54/74F			54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
tpLH tpHL	Propagation Delay C_{0} to S_{n}	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
tpLH tpHL	Propagation Delay A_{n} or B_{n} to S_{n}		7.0 7.0	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	3.0 3.5	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
tpLH tpHL	Propagation Delay C_{0} to C_{4}		5.7 5.4	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$		$\begin{gathered} 10.5 \\ 10 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
tpLH tpHL	Propagation $\mathrm{A}_{\mathrm{n}} \text { or } \mathrm{B}_{\mathrm{n}} \text { to } \mathrm{C}_{4}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	3.0 3.0	$\begin{gathered} 10.5 \\ 10 \end{gathered}$	3.0 3.0	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns

