MC14554B

2-Bit by 2-Bit Parallel Binary Multiplier

The MC14554B 2×2-bit parallel binary multiplier is constructed with complementary MOS (CMOS) enhancement mode devices. The multiplier can perform the multiplication of two binary numbers and simultaneously add two other binary numbers to the product. The MC14554B has two multiplicand inputs (X 0 and X 1), two multiplier inputs (Y 0 and Y 1), five cascading or adding inputs (K0, K1, M0, M1, and M2), and five sum and carry outputs (S0, S1, S2, C1 [S3], and C0). The basic multiplier can be expanded into a straightforward m-bit by n-bit parallel multiplier without additional logic elements.

Application areas include arithmetic processing (multiplying/adding, obtaining square roots, polynomial evaluation, obtaining reciprocals, and dividing), Fast Fourier Transform processing, digital filtering, communications (convolution and correlation), and process and machine controls.

- Diode Protection on All Inputs
- All Outputs Buffered
- Straight-forward m-Bit By n-Bit Expansion
- No Additional Logic Elements Needed for Expansion
- Multiplies and Adds Simultaneously
- Positive Logic Design
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
Ceramic "L" Packages: - $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ORDERING INFORMATION

MC14XXXBCP	Plastic
MC14XXXBCL	Ceramic
MC14XXXBD	SOIC

$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or $\left.V_{D D}\right)$. Unused outputs must be left open.

EQUATIONS

$S=(X \times Y)+K+M$
Where:
x Means Arithmetic Times.

+ Means Arithmetic Plus.
$S=S 3 S 2 S 1 S 0, X=X 1 X 0, Y=Y 1 Y 0$,
K = K1 K0, M = M1 M0 (Binary Numbers).
Example:
Given: $X=2(1), Y=3(11)$

$$
\mathrm{K}=1(01), \mathrm{M}=2(10)
$$

Then: $S=(2 \times 3)+1+2=9$

$$
S=(10 \times 11)+01+10=1001
$$

NOTE: C0 connected to M2 for this size multiplier. See general expansion diagram for other size multipliers.

REV 3
1/94

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Characteristic	Symbol	$\begin{aligned} & \text { VDD } \\ & \text { Vdc } \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D}$ or 0 " 1 " Level $V_{\text {in }}=0$ or $V_{D D}$	V OL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	0 0 0	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage " $0 "$ Level $\left(\mathrm{V}_{\mathrm{O}}=4.5\right.$ or 0.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=9.0\right.$ or 1.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=0.5\right.$ or 4.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=1.0\right.$ or 9.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=1.5\right.$ or 13.5 Vdc$)$	V_{IL}	5.0 10 15	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $(\mathrm{VOH}=2.5 \mathrm{Vdc})$ Source $(\mathrm{VOH}=4.6 \mathrm{Vdc})$ $(\mathrm{VOH}=9.5 \mathrm{Vdc})$ $(\mathrm{VOH}=13.5 \mathrm{Vdc})$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} (\mathrm{VOL}=0.4 \mathrm{Vdc}) & \text { Sink } \\ (\mathrm{VOL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{I}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I} T=(1.0 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{IT}=(2.0 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(3.0 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \end{aligned}$							$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
** The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
†To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{Vfk}
$$

where: I_{\top} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.0035$.

SWITCHING CHARACTERISTICS* ${ }^{*}\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

Characteristic	Symbol	VDD	Min	Typ \#	Max	Unit
$\begin{aligned} & \text { Output Rise and Fall Time } \\ & \text { t } \mathrm{TLH}, \mathrm{t} \mathrm{t} H \mathrm{HL}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TL} L \mathrm{H}, \mathrm{t} \mathrm{t} H L}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}, \mathrm{t}, \mathrm{t} H L}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { tTLH, } \\ & { }^{\text {tTHL }} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
```Propagation Delay Time K0 to C0 tPLH, tPHL \(=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+185 \mathrm{~ns}\) tPLH, tPHL \(=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}_{\mathrm{L}}+82 \mathrm{~ns}\) tPLH, tPHL \(=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+60 \mathrm{~ns}\) M0 to S2 tPLH, tPHL \(=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+595 \mathrm{~ns}\) \(\mathrm{t}_{\mathrm{PLH}}, \mathrm{tPHL}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+247 \mathrm{~ns}\) tPLH, tPHL \(=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+185 \mathrm{~ns}\)```	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	- - - - -	$\begin{gathered} 270 \\ 115 \\ 85 \\ \\ 680 \\ 280 \\ 210 \end{gathered}$	$\begin{gathered} 675 \\ 290 \\ 215 \\ \\ 1700 \\ 750 \\ 570 \end{gathered}$	ns

*The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Dynamic Power Dissipation Waveforms


For K0 to C0:
Inputs X0, X1, Y0, Y1, K1, and M2 low, and inputs M 0 and M 1 high.
For M0 to S2:
Inputs X1, Y1, and K0 low, and inputs X0, Y0, K1, M1, and M2 high.

Figure 2. Dynamic Signal Waveforms

## LOGIC DIAGRAM



## EXPANSION DIAGRAM

m-Bit by $\mathbf{n}$-Bit Parallel Binary Multiplier (Top View)



## D SUFFIX

PLASTIC SOIC PACKAGE
CASE 751B-05
ISSUE J


NOTES:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982.
2. CONTROLLING DIMENSION: MLLIIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALOOWABLEDAMBAR
PROTRUSION SHALL BE $0.127(0.005)$ TOTAL
 IN EXCESS OF THE D DIMENSION A.
MAXIMUM MATERAL CONDITION.

DIM	MILLIMETERS		INCHES		
	MIN		MAX	MIN	
MAX					
A	9.80	10.00	0.386	0.393	
B	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27		BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0	$7^{\circ}$	$7^{\circ}$	$0^{\circ}$	
P	5.80	6.20	0.229	$7^{\circ} 0.244$	
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , ds are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; $8 B$ Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

