MC14513B

BCD-To-Seven Segment Latch/Decoder/Driver CMOS MSI
 (Low-Power Complementary MOS)

The MC14513B BCD-to-seven segment latch/decoder/driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and has output drive capability. Lamp test $(\overline{\mathrm{LT}})$, blanking $(\overline{\mathrm{BI}})$, and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. The Ripple Blanking Input (RBI) and Ripple Blanking Output (RBO) can be used to suppress either leading or trailing zeroes. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- Low Logic Circuit Power Dissipation
- High-current Sourcing Outputs (Up to 25 mA)
- Latch Storage of Binary Input
- Blanking Input
- Lamp Test Provision
- Readout Blanking on all Illegal Input Combinations
- Lamp Intensity Modulation Capability
- Time Share (Multiplexing) Capability
- Adds Ripple Blanking In, Ripple Blanking Out to MC14511B
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Capable of Driving Two Low-Power TTL Loads, One Low-power Schottky TTL Load to Two HTL Loads Over the Rated Temperature Range.
MAXIMUM RATINGS (Voltages Referenced to V_{SS}) ${ }^{\text {(1.) }}$

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage Range, All Inputs	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I	DC Current Drain per Input Pin	10	mA
P_{D}	Power Dissipation, per Package (2.)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OHmax }}$	Maximum Continuous Output Drive Current (Source) per Output	25	mA
PoHmax	Maximum Continuous Output Power (Source) per Output (3.)	50	mW

ON Semiconductor

http://onsemi.com

A $=$ Assembly Location
WL or $L=$ Wafer Lot
YY or $Y=$ Year
WW or $W=$ Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC14513BCP	PDIP-18	20/Rail

This device contains protection circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit. A destructive high current mode may occur if $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ are not constrained to the range $V_{S S} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{D D}$.
Due to the sourcing capability of this circuit, damage can occur to the device if V_{DD} is applied, and the outputs are shorted to V_{SS} and are at a logical 1 (See Maximum Ratings).

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

1. Maximum Ratings are those values beyond which damage to the device may occur.
2. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
3. $\mathrm{P}_{\mathrm{OH}} \mathrm{max}=\mathrm{I}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}\right)$

MC14513B

TRUTH TABLE

Inputs								Outputs								
RBI	LE	BI	LT	D	C	B	A	RBO	a	b	c	d	e	f	g	Display
X	X	X	0	X	X	X	X	+	1	1	1	1	1	1	1	8
X	X	0	1	X	X	X	X	+	0	0	0	0	0	0	0	Blank
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	Blank
0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0
X	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0	1
X	0	1	1	0	0	1	0	0	1	1	0	1	1	0	1	2
X	0	1	1	0	0	1	1	0	1	1	1	1	0	0	1	3
X	0	1	1	0	1	0	0	0	0	1	1	0	0	1	1	4
X	0	1	1	0	1	0	1	0	1	0	1	1	0	1	1	5
X	0	1	1	0	1	1	0	0	1	0	1	1	1	1	1	6
X	0	1	1	0	1	1	1	0	1	1	1	0	0	0	0	7
X	0	1	1	1	0	0	0	0	1	1	1	1	1	1	1	8
X	0	1	1	1	0	0	1	0	1	1	1	1	0	1	1	9
X	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	Blank
X	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	Blank
X	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	Blank
X	0	1	1	1	1	0	1	0	0	0	0	0	0	0	0	Blank
X	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	Blank
X	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	Blank
X	1	1	1	X	X	X	X	\dagger				*				*

X = Don't Care
\dagger RBO $=$ RBI ($\bar{D} \bar{C} \bar{B} \bar{A})$, indicated by other rows of table
*Depends upon the BCD code previously applied when $\mathrm{LE}=0$

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ ${ }^{\text {(4.) }}$	Max	Min	Max	
Output Voltage - Segment Outputs $V_{\text {in }}=V_{D D} \text { or } 0$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
"1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.1 \\ 9.1 \\ 14.1 \end{gathered}$	-	$\begin{gathered} 4.1 \\ 9.1 \\ 14.1 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.1 \\ 9.1 \\ 14.1 \end{gathered}$	-	Vdc
Output Voltage — RBO Output $V_{\text {in }}=V_{D D} \text { or } 0$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
"1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Input Voltage }(4 .) & \text { " } 0 \text { " Level } \\ \left(\mathrm{V}_{\mathrm{O}}=3.8 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=8.8 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.8 \text { or } 1.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 3.8 \mathrm{Vdc}\right) & \text { "1" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 8.8 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.8 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
	V_{OH}	5.0	4.1 3.9 -4	- - - -	4.1 3.9 -4	$\begin{aligned} & 4.57 \\ & 4.24 \\ & 4.12 \\ & 3.94 \\ & 3.70 \\ & 3.54 \end{aligned}$	- - -	4.1 - 3.5 - 3.0 -	- - - -	Vdc
		10	9.1 -8.0 -8.6	- - - -	9.1 - 9.0 8.6	$\begin{aligned} & 9.58 \\ & 9.26 \\ & 9.17 \\ & 9.04 \\ & 8.90 \\ & 8.75 \end{aligned}$	-	9.1 8.6 8.2	- - - -	Vdc
		15	14.1 - 14 13.6	- - - -	14.1 - 14 13.6	$\begin{aligned} & \hline 14.59 \\ & 14.27 \\ & 14.18 \\ & 14.07 \\ & 13.95 \\ & 13.80 \end{aligned}$	-	14.1 - 13.6 -13.2	-	Vdc

(continued)

ELECTRICAL CHARACTERISTICS - continued (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \text { Vdc } \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (4.)	Max	Min	Max	
$\begin{array}{\|lr} \hline \text { Output Drive Current - RBO Output } \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{~V}\right) & \end{array}$	$\mathrm{IOH}^{\text {a }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -0.40 \\ & -0.21 \\ & -0.81 \end{aligned}$	-	$\begin{aligned} & -0.32 \\ & -0.17 \\ & -0.66 \end{aligned}$	$\begin{aligned} & -0.64 \\ & -0.34 \\ & -1.30 \end{aligned}$	-	$\begin{aligned} & -0.22 \\ & -0.12 \\ & -0.46 \end{aligned}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}\right) \end{aligned}$	loL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.47 \\ & 1.80 \end{aligned}$	-	$\begin{aligned} & 0.15 \\ & 0.38 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.75 \\ & 2.90 \end{aligned}$	-	$\begin{gathered} 0.10 \\ 0.26 \\ 1.0 \end{gathered}$	-	mAdc
$\begin{array}{\|l\|} \hline \text { Output Drive Current — Segments } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}\right) \end{array}$	${ }_{\text {IOL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
$\begin{aligned} & \text { Quiescent Current } \\ & \text { (Per Package) } \mathrm{V}_{\text {in }}=0 \text { or } \mathrm{V}_{\mathrm{DD}} \text {, } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (5.) (6.) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }_{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.9 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.8 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(5.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

4. Noise immunity specified for worst-case input combination.

Noise Margin for both " 1 " and " 0 " level =

$$
\begin{aligned}
& 1.0 \mathrm{Vdc} \min @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{Vdc} \\
& 2.0 \mathrm{Vdc} \min @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{Vdc} \\
& 2.5 \mathrm{Vdc} \min @ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{Vdc}
\end{aligned}
$$

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+3.5 \times 10^{-3}\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{V}_{\mathrm{DD}} f
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in Vdc , and f in kHz is input frequency.

Input LE and RBI low, and Inputs D, $\overline{\mathrm{BI}}$ and $\overline{\mathrm{T}}$ high.
f in respect to a system clock.
All outputs connected to respective C_{L} loads.

Figure 1. Dynamic Power Dissipation Signal Waveforms

SWITCHING CHARACTERISTICS ${ }^{(7 .)}\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{D D}$ Vdc	All Types			Unit
			Min	Typ	Max	
Output Rise Time - Segment Outputs	ttin	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 50 \end{aligned}$	ns
Output Rise Time - RBO Output	${ }_{\text {t }}^{\text {the }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 480 \\ & 240 \\ & 190 \end{aligned}$	$\begin{aligned} & 960 \\ & 480 \\ & 380 \end{aligned}$	ns
$\begin{aligned} & \hline \text { Output Fall Time - Segment Outputs } \\ & \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+50 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+37.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+37.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 125 \\ & 75 \\ & 65 \end{aligned}$	$\begin{aligned} & 250 \\ & 150 \\ & 130 \end{aligned}$	ns
$\begin{gathered} \text { Output Fall Time - RBO Outputs } \\ \mathrm{t}_{\mathrm{THL}}=(3.25 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+107.5 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{THL}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+67.5 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{THL}}=(0.95 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+62.5 \mathrm{~ns} \end{gathered}$	${ }_{\text {t }}^{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 270 \\ & 135 \\ & 110 \end{aligned}$	$\begin{aligned} & 540 \\ & 270 \\ & 220 \end{aligned}$	ns
$\begin{aligned} & \text { Propagation Delay Time }-\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \text { Inputs }{ }^{(1 .)} \\ & \text { t }_{\text {PLH }}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+620 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}=(0.25 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+237.5 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}=(0.20 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+165 \mathrm{~ns} \end{aligned}$	tpLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 640 \\ & 250 \\ & 175 \end{aligned}$	$\begin{gathered} 1280 \\ 500 \\ 350 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}=(1.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+655 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+260 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+182.5 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 720 \\ & 290 \\ & 200 \end{aligned}$	$\begin{gathered} 1440 \\ 580 \\ 400 \end{gathered}$	ns
$\begin{aligned} & \text { Propagation Delay Time }- \text { RBI and BI Inputs }(7 .) \\ & \text { tpLH }^{2}=(1.05 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+547.5 \mathrm{~ns} \\ & \text { tpLH }=(0.45 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+177.5 \mathrm{~ns} \\ & \text { tpLH }=(0.30 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+135 \mathrm{~ns} \end{aligned}$	tpLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 600 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 750 \\ & 300 \\ & 220 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}=(0.85 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+442.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.45 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+177.5 \mathrm{~ns} \\ & t_{\mathrm{tPL}}=(0.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+142.5 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 485 \\ & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 970 \\ & 400 \\ & 320 \end{aligned}$	ns
$\begin{gathered} \text { Propagation Delay Time }- \text { LT Input (7.) } \\ \text { t PLH }=(0.45 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+290.5 \mathrm{~ns} \\ \text { t }_{\text {PLH }}=(0.25 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+112.5 \mathrm{~ns} \\ \text { t }_{\text {PLH }}=(0.20 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+80 \mathrm{~ns} \end{gathered}$	tpLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 313 \\ & 125 \\ & 90 \end{aligned}$	$\begin{aligned} & 625 \\ & 250 \\ & 180 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PHL }}=(1.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+248 \mathrm{~ns} \\ & t_{\text {PHL }}=(0.45 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+102.5 \mathrm{~ns} \\ & t_{\text {PHL }}=(0.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+72.5 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 313 \\ 125 \\ 90 \end{gathered}$	$\begin{aligned} & 625 \\ & 250 \\ & 180 \end{aligned}$	ns
Setup Time	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 40 \\ & 30 \end{aligned}$	-	-	ns
Hold Time	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 30 \end{aligned}$	-	-	ns
Latch Enable Pulse Width	${ }^{\text {twL(LE) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 520 \\ & 220 \\ & 130 \end{aligned}$	$\begin{gathered} 260 \\ 110 \\ 65 \end{gathered}$	-	ns

7. The formulas given are for the typical characteristics only.

a. Data Propagation Delay: Inputs RBI, D and LE low, and Inputs A, B, BI and LT high.

b. Inputs A, B, D and LE low, and Inputs RBI, BI and LT high.

c. Setup and Hold Times: Input RBI and D low, Inputs A, B, BI and LT high.

LE

d. Pulse Width: Data DCBA strobed into latches.

Figure 2. Dynamic Signal Waveforms

CONNECTIONS TO VARIOUS DISPLAY READOUTS
LIGHT EMITTING DIODE (LED) READOUT

INCANDESCENT READOUT

GAS DISCHARGE READOUT

** A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

FLUORESCENT READOUT

LIQUID CRYSTAL (LC) READOUT

Direct dc drive of LC's not recommended for life of LC readouts.

MC14513B

TYPICAL APPLICATIONS FOR RIPPLE BLANKING

LEADING EDGE ZERO SUPPRESSION

TRAILING EDGE ZERO SUPPRESSION

PACKAGE DIMENSIONS

PDIP-18
P SUFFIX
PLASTIC DIP PACKAGE
CASE 707-02
ISSUE C

NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	0.875	0.915	22.22	23.24		
B	0.240	0.260	6.10	6.60		
C	0.140	0.180	3.56	4.57		
D	0.014	0.022	0.36	0.56		
F	0.050		0.070	1.27		1.78
G	0.100		BSC	2.54 BSC		
H	0.040	0.060	1.02	1.52		
J	0.008	0.012	0.20			
K	0.115		0.135	2.92		3.43
L	0.300		BSC	7.62		BSC
M	0°		15°	0		

Notes

ON Semiconductor and \square are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

