MC14510B

BCD Up/Down Counter

The MC14510B synchronous up/down BCD counter is constructed with MOS P-channel and N -channel enhancement mode devices in a monolithic structure. The counter consists of type D flip-flop stages with a gating structure to provide type T flip-flop capability.

This counter can be preset by applying the desired value in BCD to the Preset inputs (P1, P2, P3, P4) and then bringing the Preset Enable (PE) high. The direction of counting is controlled by applying a high (for up counting) or a low (for down counting) to the UP/DOWN input. The state of the counter changes on the positive transition of the clock input.

Cascading can be accomplished by connecting the Carry Out to the Carry In of the next stage while clocking each counter in parallel. The outputs (Q1, Q2, Q3, Q4) can be reset to a low state by applying a high to the Reset (R) pin.

This CMOS counter finds primary use in up/down and difference counting. Other applications include: (1) Frequency synthesizer applications where low power dissipation and/or high noise immunity is desired, (2) Analog-todigital and digital-to-analog conversions, and (3) Magnitude and sign generation.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design - Count Occurs on Positive Going Edge of Clock
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.
MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package \dagger	500	mW
$\mathrm{~T}_{\text {Stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the may occur. \dagger Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$ Ceramic "L" Packages: - $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Reset	Clock	Action
1	X	0	0	X	No Count
0	1	0	0	Ω	Count Up
0	0	0	0	Ω	Count Down
X	X	1	0	X	Preset
X	X	X	1	X	Reset

X = Don't Care
NOTE: When counting up, the Carry Out signal is normally high, and is low only when Q1 and Q4 are high and Carry In is low. When counting down, Carry $\overline{\text { Out is low only when Q1 through Q4 and Carry In are low. }}$

ORDERING INFORMATION $\begin{array}{ll}\text { MC14XXXBCP } & \text { Plastic } \\ \text { MC14XXXBCL } & \text { Ceramic } \\ \text { MC14XXXBD } & \text { SOIC }\end{array}$
$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or $V_{D D}$). Unused outputs must be left open.

REV 3
1/94
© Motorola, Inc. 1995

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Characteristic	Symbol	VDD Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \#	Max	Min	Max	
Output Voltage $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{i n}=0 \text { or } V_{D D}$	V_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \\ \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array}$	VIL	5.0 10 15	二	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	二	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	3.5 7.0 11	-	Vdc
Output Drive Current $\left(\mathrm{VOH}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $(\mathrm{VOH}=9.5 \mathrm{Vdc})$ $\left(\mathrm{VOH}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} (\mathrm{VOL}=0.4 \mathrm{Vdc}) & \text { Sink } \\ (\mathrm{VOL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{I}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	lin	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current** \dagger (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.58 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \\ & \mathrm{I}_{\mathrm{T}}=(1.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(1.70 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I} \mathrm{DD} \end{aligned}$							$\mu \mathrm{Adc}$

\#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
** The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
\dagger To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

PIN ASSIGNMENT

PE 1 -	16
Q4 2	15
P4 3	14
P1 ¢ 4	13
$\overline{\text { CARRY IN }} 5$	12
Q1 46	11
$\overline{\text { CARRY OUT }} 17$	10
$V_{S S}[8$	9

SWITCHING CHARACTERISTICS＊$\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ ，See Figure 2）

Characteristic	Symbol	VDD	All Types			Unit
			Min	Typ \＃	Max	
```Output Rise and Fall Time \({ }^{\mathrm{t} T \mathrm{LH}, \mathrm{t} T H \mathrm{~L}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}\) \({ }^{\mathrm{t} T L H}, \mathrm{t} T H \mathrm{~L}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}\) t \(\mathrm{T} L \mathrm{H}, \mathrm{t}\) thL \(=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns}\)```	$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	－	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
```Propagation Delay Time Clock to Q tPLH, tPHL = (1.7 ns/pF) CL + 230 ns tPLH, tPHL = (0.66 ns/pF) CL +97 ns tPLH, tPHL = (0.5 ns/pF) CL + 75 ns```	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 260 \\ & 200 \end{aligned}$	ns
Clock to Carry Out tPLH，tPHL $=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+230 \mathrm{~ns}$ tPLH，tPHL $=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$ tPLH，tPHL $=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns}$	$\begin{aligned} & \hline \text { tpLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 260 \\ & 200 \end{aligned}$	ns
```Carry In to Carry Out tPLH, tPHL = (1.7 ns/pF) CL +230 ns tPLH, tPHL = (0.66 ns/pF) C C + 47 ns tPLH, tPHL = (0.5 ns/pF) CL + 35 ns```	$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{aligned} & 180 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 360 \\ & 160 \\ & 120 \end{aligned}$	ns
```Preset or Reset to Q tPLH, tPHL = (1.7 ns/pF) CL +230 ns tPLH, tPHL = (0.66 ns/pF) C C + 97 ns tPLH, tPHL = (0.5 ns/pF) CL + 75 ns```	$\begin{aligned} & \hline \text { tpLH, } \\ & \text { tPHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{aligned} & 315 \\ & 130 \\ & 100 \end{aligned}$	$\begin{aligned} & 630 \\ & 260 \\ & 200 \end{aligned}$	ns
$\begin{aligned} & \text { Preset or Reset to } \overline{\text { Carry Out }} \\ & \text { tPLH, tPHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+465 \mathrm{~ns} \\ & \text { tpLH, tPHL }=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+192 \mathrm{~ns} \\ & \text { tPLH, tPHL }=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+125 \mathrm{~ns} \end{aligned}$	tPLH， tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 550 \\ & 225 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 1100 \\ & 450 \\ & 300 \\ & \hline \end{aligned}$	ns
Reset Pulse Width	${ }^{\text {w }}$（H）	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 360 \\ & 210 \\ & 160 \end{aligned}$	$\begin{aligned} & 180 \\ & 105 \\ & 80 \end{aligned}$	－	ns
Clock Pulse Width	${ }^{\text {tw }}$（H）	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 75 \end{aligned}$	二	ns
Clock Pulse Frequency	f_{Cl}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	MHz
Preset or Reset Removal Time The Preset or Reset Signal must be low prior to a positive－going transition of the clock．	trem	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 650 \\ & 230 \\ & 180 \end{aligned}$	$\begin{aligned} & 325 \\ & 115 \\ & 90 \end{aligned}$	－	ns
Clock Rise and Fall Time	$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	－	$\begin{gathered} \hline 15 \\ 5 \\ 4 \end{gathered}$	$\mu \mathrm{s}$
Setup Time Carry In to Clock	${ }^{\text {tsu}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 260 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 130 \\ & 60 \\ & 50 \end{aligned}$	－	ns
Hold Time Clock to $\overline{\text { Carry In }}$	th	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & -50 \\ & -15 \\ & -5 \end{aligned}$	－	ns
Setup Time Up／Down to Clock	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 175 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 75 \end{aligned}$	－	ns
Hold Time Clock to Up／Down	th	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -70 \\ & -30 \\ & -20 \end{aligned}$	$\begin{aligned} & -140 \\ & -80 \\ & -50 \end{aligned}$	－	ns
Setup Time Pn to PE	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -50 \\ & -30 \\ & -25 \end{aligned}$	$\begin{aligned} & \hline-100 \\ & -65 \\ & -55 \end{aligned}$	－	ns
Hold Time PE to Pn	th	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 480 \\ & 410 \\ & 410 \end{aligned}$	$\begin{aligned} & 240 \\ & 205 \\ & 205 \end{aligned}$	－	ns
Preset Enable Pulse Width	twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	－	ns

＊The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$ ．
\＃Data labelled＂Typ＂is not to be used for design purposes but is intended as an indication of the IC＇s potential performance．

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

STATE DIAGRAM FOR UP COUNTING

STATE DIAGRAM FOR DOWN COUNTING

PIN DESCRIPTIONS

INPUTS

P1, P2, P3, P4, Preset Inputs (Pins 4, 12, 13, 3) — Data on these inputs is loaded into the counter when PE is taken high.

Carry In, (Pin 5) - Active-low input used when cascading stages. Usually connected to Carry Out of the previous stage. While high, clock is inhibited.

Clock, (Pin 15) - BCD data is incremented or decremented, depending on the direction of count, on the positive transition of this signal.

OUTPUTS

Q1, Q2, Q3, Q4, BCD outputs (Pins 6, 11, 14, 2) — BCD data is present on these outputs with Q1 corresponding to the least significant bit.

Carry Out, (Pin 7) — Used when cascading stages, this pin is usually connected to Carry In of the next stage. This
synchronous output is active low and may also be used to indicate terminal count.

CONTROLS

PE, Preset Enable (Pin 1) - Asynchronously loads data on the Preset Inputs. This pin is active high and will inhibit the clock when high.

R, Reset, (Pin 9) - Asynchronously resets the Q outputs to a low state. This pin is active high and will inhibit the clock when high.

Up/Down, (Pin 10) - Controls the direction of count: high for up count, low for down count.

SUPPLY PINS

$V_{\text {SS }}$, Negative Supply Voltage, (Pin 8) — This pin is usually connected to ground.

VDD, Positive Supply Voltage, (Pin 16) - This pin is connected to a positive supply voltage ranging from 3.0 Vdc to 18.0 Vdc.

Note: The Least Significant Digit (L.S.D.) counts from a preset value once Preset Enable (PE) goes low. The Most Significant Digit (M.S.D.) does not change while $\overline{\mathrm{C}}_{\mathrm{in}}$ is high. When the count of the L.S.D. reaches 0 (count down mode) or reaches 9 (count up mode), $\overline{\mathrm{C}}_{\text {out }}$ goes low for one complete clock cycle, thus allowing the next counter to decrement/increment one count. The L.S.D. now counts through another cycle (10 clock pulses) and the above cycle is repeated.

Figure 3. Presettable Cascaded 8-Bit Up/Down Counter

TIMING DIAGRAM FOR THE PRESETTABLE CASCADED 8-BIT UP/DOWN COUNTER

Note: The programmable frequency divider can be set by applying the desired divide ratio, in BCD, to the preset inputs. For example, the maximum divide ratio of 99 may be obtained by applying a 10011001 to the preset inputs P0 to P7. For this divide operation, both counters should be configured in the count down mode. The divide ratio of zero is an undefined state and should be avoided.

Figure 4. Programmable Cascaded Frequency Divider

D SUFFIX

PLASTIC SOIC PACKAGE
CASE 751B-05
ISSUE J

NOTES:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982.
2. CONTROLING DIMENSION:MILIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTTUSION. ALLOLABELEDABAR
PRTRUSION SHAL LE $0.127(0.005)$ TOTAL
 MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , ds are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

