Dual J-K Master-Slave Flip-Flop

The MC10135 is a dual master–slave dc coupled J–K flip–flop. Asynchronous set (S) and reset (R) are provided. The set and reset inputs override the clock.

A common clock is provided with separate J–K inputs. When the clock is static, the J–K inputs do not effect the output.

The output states of the flip-flop change on the positive transition of the clock.

 $P_D = 280 \text{ mW typ/pkg (No Load)}$

 $f_{Tog} = 140 \text{ MHz typ}$

 $t_{pd} = 3.0 \text{ ns typ}$

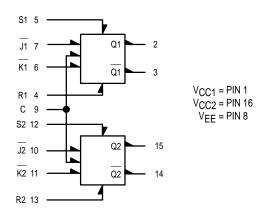
 t_f , $t_f = 2.5 \text{ ns typ } (20\%-80\%)$

MC10135

L SUFFIX

CERAMIC PACKAGE CASE 620-10

P SUFFIX


PLASTIC PACKAGE CASE 648-08

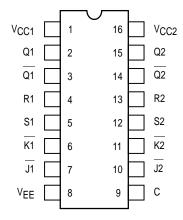
FN SUFFIX PLCC

CASE 775-02

LOGIC DIAGRAM

LOGIC DIAGNAM

R-S TRUTH TABLE CLOCK J-K TRUTH TABLE*


R	S	Q _{n+1}
	Η	Q _n H
Н	L	L
Н	Н	N.D.

N.D. = Not Defined

J	K	Q _{n+1}
T T T	НН	Qn L H Qn

*Output states change_on_positive transition of clock for J–K input condition present.

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion
Tables on page 6–11 of the Motorola MECL Data
Book (DL122/D).

ELECTRICAL CHARACTERISTICS

			Test Limits							
		Pin Under	−30°C		+25°C		+85°C		1	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	ΙΕ	8		75		54	68		75	mAdc
Input Current	l _{inH}	6,7,9,10,11 4,5,12,13		425 620			265 390		265 390	μAdc
	l _{inL}	4,5,6,7,9, 10,11,12,13	0.5 0.5		0.5 0.5			0.3 0.3		μAdc
Output Voltage Logic 1	Vон	2 2 (3.)	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	VOL	3 3 (3.)	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	Vона	2 2 (4.)	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		Vdc
Threshold Voltage Logic 0	VOLA	3 3 (4.)		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Times $(50\Omega \text{ Load})$ Clock Input										ns
Propagation Delay	t9+2+ t9+2-	2 2	1.8 1.8	5.0 5.0	1.8 1.8	3.0 3.0	4.5 4.5	1.8 1.8	4.6 4.6	
Rise Time (20 to 80%)	t ₂₊ , t ₃₊	2, 3	1.1	4.8	1.1	2.0	4.5	1.1	4.7	
Fall Time (20 to 80%)	t ₂₋ , t ₃₋	2, 3	1.1	4.8	1.1	2.0	4.5	1.1	4.7	
Set Input Propagation Delay	^t 5+2+ ^t 12+15+ ^t 5+3– ^t 12+14–	2 15 3 14	1.8 1.8 1.8 1.8	5.6 5.6 5.6 5.6	1.8 1.8 1.8	3.0 3.0 3.0 3.0	5.0 5.0 5.0 5.0	1.8	5.2 5.2 5.2 5.2	ns
Reset Input	12714-									ns
Propagation Delay	t ₄₊₂ - t ₄₊₃ - t ₁₃₊₁₅ - t ₁₃₊₁₄₊	2 3 15 14	1.8 1.8 1.8 1.8	5.6 5.6 5.6 5.6	1.8 1.8 1.8 1.8	3.0 3.0 3.0 3.0	5.0 5.0 5.0 5.0	1.8 1.8 1.8 1.8	5.2 5.2 5.2 5.2	110
Setup Time	^t setup	7	2.5		2.5	1.0		2.5		ns
Hold Time	^t hold	7	1.5		1.5	1.0		2.5		ns
Toggle Frequency (Max)	ftog	2	125		125	140		125		MHz

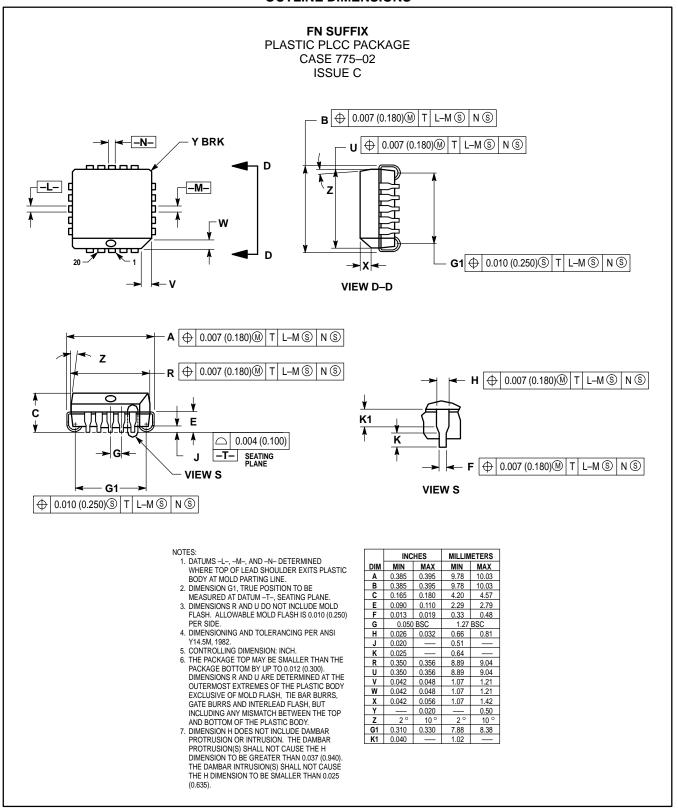
 V_{IHmax} 3. Output level to be measured after a clock pulse has been applied to the $\overline{C_E}$ Input (Pin 6) V_{ILmin} V_{IHAmax} 4. Output level to be measured after a clock pulse has been applied to the $\overline{C_E}$ Input (Pin 6) V_{ILAmin}

> **MOTOROLA** 3-23

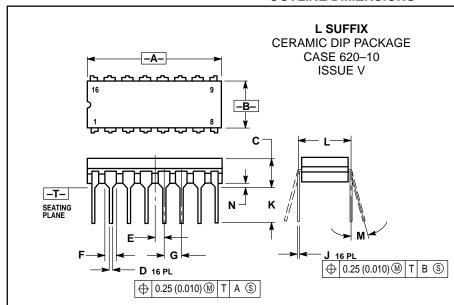
Individually test each input; apply V_{IHmax} to pin under test.
 Individually test each input; apply V_{ILmin} to pin under test.

ELECTRICAL CHARACTERISTICS (continued)

			TEST VOLTAGE VALUES (Volts)					
	@ Test	Temperature	V _{IHmax}	V _{ILmin}	VIHAmin	V _{ILAmax}	VEE	
–30°C			-0.890	-1.890	-1.205	-1.500	-5.2	
+25°C			-0.810	-1.850	-1.105	-1.475	-5.2	
		+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin	TEST V	OLTAGE A	PPLIED TO I	PINS LISTED E	BELOW	<i>(</i>)
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain Current	ΙE	8					8	1, 16
Input Current	linH	6,7,9,10,11 4,5,12,13	Note 1. Note 1.				8 8	1, 16 1, 16
	l _{inL}	4,5,6,7,9, 10,11,12,13		Note 2. Note 2.			8 8	1, 16 1, 16
Output Voltage Logic 1	Vон	2 2 (3.)	5 6				8 8	1, 16 1, 16
Output Voltage Logic 0	VOL	3 3 (3.)	5 6				8 8	1, 16 1, 16
Threshold Voltage Logic 1	Vона	2 2 (4.)	6		5		8 8	1, 16 1, 16
Threshold Voltage Logic 0	VOLA	3 3 (4.)	6		5		8 8	1, 16 1, 16
Switching Times (50 Ω Load) Clock Input					Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t ₉₊₂₊ t ₉₊₂₋	2 2			9	2 2	8 8	1, 16 1, 16
Rise Time (20 to 80%)	t ₂₊ , t ₃₊	2, 3			9	2, 3	8	1, 16
Fall Time (20 to 80%)	t2-, t3-	2, 3			9	2, 3	8	1, 16
Set Input								
Propagation Delay	t5+2+ t12+15+ t5+3- t12+14-	2 15 3 14			5 12 5 12	2 15 3 14	8 8 8 8	1, 16 1, 16 1, 16 1, 16
Reset Input								
Propagation Delay	t ₄₊₂ - t ₄₊₃ - t ₁₃₊₁₅ - t ₁₃₊₁₄₊	2 3 15 14			4 4 13 13	2 3 15 14	8 8 8	1, 16 1, 16 1, 16 1, 16
Setup Time	t _{setup}	7			6, 9	2	8	1, 16
Hold Time	^t hold	7			6, 9	2	8	1, 16
Toggle Frequency (Max)	f _{tog}	2			9	2	8	1, 16

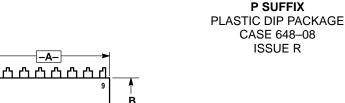

Individually test each input; apply V_{IHmax} to pin under test.
 Individually test each input; apply V_{ILmin} to pin under test.

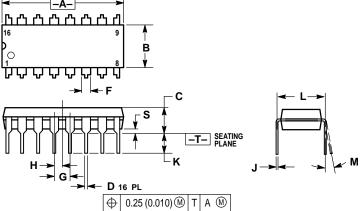
3.	Output level to be measured after a clock pulse has been applied to the $\overline{C_E}$ Input (Pin 6)	VII min
	Output level to be measured after a clock pulse has been applied to the $\overline{C_E}$ Input (Pin 6)	


Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

MOTOROLA 3-24

OUTLINE DIMENSIONS


OUTLINE DIMENSIONS



NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

			MILLIMETERS		
	INC	HES			
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050 BSC		1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62	BSC	
М	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110 0.130	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

