32-bit RISC Microcontroller

CMOS

FR Family MB91F109

MB91F109

■ DESCRIPTION

The MB91F109 is a standard single-chip microcontroller constructed around the 32-bit RISC CPU (FR* family) core with abundant I/O resources and bus control functions optimized for high-performance/high-speed CPU processing for embedded controller applications. To carry out hi-speed performance of CPU instructions, instruction/data Flash memory of 254 Kbytes and RAM of 2 Kbytes + 2 Kbytes are embedded in the MB91F109.
The MB91F109 is optimized for applications requiring high-performance CPU processing such as navigation systems, high-performance FAXs and printer controllers.
*: FR Family stands for FUJITSU RISC controller.

■ FEATURES

FR CPU

- 32-bit RISC, load/store architecture, 5-stage pipeline
- Operating clock frequency: Internal $25 \mathrm{MHz} /$ external 25 MHz (PLL used at source oscillation 12.5 MHz)
- General purpose registers: 32 bits $\times 16$
- 16-bit fixed length instructions (basic instructions), 1 instruction/1 cycle
- Memory to memory transfer, bit processing, barrel shifter processing: Optimized for embedded applications
- Function entrance/exit instructions, multiple load/store instructions of register contents, instruction systems supporting high level languages
- Register interlock functions, efficient assembly language coding
- Branch instructions with delay slots: Reduced overhead time in branch executions
(Continued)

PACKAGES

100-pin Plastic LQFP
(FPT-100P-M05)
(FPT-100P-M06)

MB91F109

(Continued)

- Internal multiplier/supported at instruction level Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles
- Interrupt (push PC and PS): 6 cycles, 16 priority levels

External bus interface

- Without Clock doubler: Maximum internal bus 25 MHz , maximum external bus 25 MHz operation
- 25-bit address bus (32 Mbytes memory space)
- 8/16-bit data bus
- Basic external bus cycle: 2 clock cycles
- Chip select outputs for setting down to a minimum memory block size of 64 Kbytes: 6
- Interface supported for various memory technologies DRAM interface (area 4 and 5)
- Automatic wait cycle insertion: Flexible setting, from 0 to 7 for each area
- Unused data/address pins can be configured us input/output ports
- Little endian mode supported (Select 1 area from area 1 to 5)

DRAM interface

- 2 banks independent control (area 4 and 5)
- Normal mode (double CAS DRAM)/high-speed page mode (single CAS DRAM)/Hyper DRAM
- Basic bus cycle: Normally 5 cycles, 2-cycle access possible in high-speed page mode
- Programmable waveform: Automatic 1 -cycle wait insertion to RAS and CAS cycles
- DRAM refresh CBR refresh (interval time configurable by 6-bit timer) Self-refresh mode
- Supports 8/9/10/12-bit column address width
- 2CAS/1WE, 2WE/1CAS selective

DMA controller (DMAC)

- 8 channels
- Transfer incident/external pins/internal resource interrupt requests
- Transfer sequence: Step transfer/block transfer/burst transfer/continuous transfer
- Transfer data length: 8 bits/16 bits/32 bits selective
- NMI/interrupt request enables temporary stop operation

UART

- 3 independent channels
- Full-duplex double buffer
- Data length: 7 bits to 9 bits (non-parity), 6 bits to 8 bits (parity)
- Asynchronous (start-stop system), CLK-synchronized communication selective
- Multi-processor mode
- Internal 16-bit timer (U-TIMER) operating as a proprietary baud rate generator: Generates any given baud rate
- Use external clock can be used as a transfer clock
- Error detection: Parity, frame, overrun

10-bit A/D converter (successive approximation conversion type)

- 10-bit resolution, 4 channels
- Successive approximation type: Conversion time of $5.6 \mu \mathrm{~s}$ at 25 MHz
- Internal sample and hold circuit
- Conversion mode: Single conversion/scanning conversion/repeated conversion/stop conversion selective
- Start: Software/external trigger/internal timer selective

MB91F109

(Continued)

16-bit reload timer

- 3 channels
- Internal clock: 2 clock cycle resolution, divide by $2 / 8 / 32$ selective

Other interval timers

- 16-bit timer: 3 channels (U-TIMER)
- PWM timer: 4 channels
- Watchdog timer: 1 channel

Bit search module

First bit transition " 1 " or " 0 " from MSB can be detected in 1 cycle

Interrupt controller

- External interrupt input: Non-maskable interrupt ($\overline{\mathrm{NMI}}$), normal interrupt $\times 4$ (INT0 to INT3)
- Internal interrupt incident:UART, DMA controller (DMAC), 10-bit A/D converter, 16-bit reload-timer, PWM timer, U-TIMER and delayed interrupt module
- Priority levels of interrupts are programmable except for non-maskable interrupt (in 16 steps)

Others

- Reset cause: Power-on reset/software reset/external reset
- Low-power consumption mode: Sleep mode/stop mode
- Clock control

Gear function: Operating clocks for CPU and peripherals are independently selective Gear clock can be selected from $1 / 1,1 / 2,1 / 4$ and $1 / 8$ (or $1 / 2,1 / 4,1 / 8$ and $1 / 16$)
(However, operating frequency for peripherals is less than 25 MHz .)

- Packages: LQFP-100 and QFP-100
- CMOS technology ($0.5 \mu \mathrm{~m}$)
- Power supply voltage: $3.15 \mathrm{~V} \sim 3.6 \mathrm{~V}$

PRODUCT LINEUP

Parameter Part number	MB91F109
Classification	Mass production products Flash (mask ROM products)
Flash size	254 Kbytes
IRAM size	-
CROM size	-
CRAM size	2 Kbytes
RAM size	2 Kbytes
I \$	-
Other	Under trial manufacture

MB91F109

PIN ASSIGNMENT

(Top view)

(FPT-100P-M05)
(Top view)

(FPT-100P-M06)

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	
LQFP*1	QFP*2		Function	

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function			
LQFP**	QFP*2						
23	26	P84	E	Can be configured as general purpose I/O port when WRO is not used.			
		$\overline{\text { WRO }}$		Write strobe output pin for external bus Relation between control signals and effective byte locations is as follows:			
24	27	$\overline{\text { WR1 }}$	E		16-bit bus width	8-bit bus width	Single chip mode
				D31 to D24	WRO	WRO	(I/O port enabled)
				D23 to D16	WR1	(I/O port enabled)	(I/O port enabled)
				Note : $\overline{\mathrm{WR1}}$ is $\mathrm{Hi}-\mathrm{Z}$ during resetting. Attach an external pull-up resister when using at 16-bit bus width.			
		P85		Can be configured as general purpose I/O port when $\overline{\mathrm{WR1}}$ is not used.			
11	14	$\overline{\mathrm{CSO}}$	E	Chip select 0 output ("L" active)			
		PAO		Can be configured as general purpose I/O port when CS0 is not used.			
10	13	$\overline{\text { CS1 }}$	E	Chip select 1 output ("L" active)			
		PA1		Can be configured as general purpose I/O port when $\overline{\mathrm{CS}}$ is not used.			
9	12	$\overline{\text { CS2 }}$	E	Chip select 2 output ("L" active)			
		PA2		Can be configured as a port when $\overline{\mathrm{CS2}}$ is not used.			
8	11	$\overline{\text { CS3 }}$	E	Chip select 3 output ("L" active)			
		PA3		Can be configured as a port when $\overline{\mathrm{CS} 3}$ and EOP1 are not used.			
		EOP1		EOP output pin for DMAC (ch. 1) This function is available when EOP output for DMAC is enabled.			
7	10	$\overline{\mathrm{CS} 4}$	E	Chip select 4 output ("L" active)			
		PA4		Can be configured as general purpose I/O port when $\overline{\mathrm{CS}}$ is not used.			
6	9	$\overline{\text { CS5 }}$	E	Chip select 5 output ("L" active)			
		PA5		Can be configured as general purpose I/O port when $\overline{\text { CS5 }}$ is not used.			
5	8	CLK	E	System clock output Outputs clock signal of external bus operating frequency.			
		PA6		Can be configured as general purpose I/O port when CLK is not used.			

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
96	99	RAS0	E	RAS output for DRAM bank 0
		PB0		Can be configured as general purpose I/O port when RASO is not used.
97	100	CSOL	E	CASL output for DRAM bank 0
		PB1		Can be configured as general purpose I/O port when CSOL is not used.
98	1	CSOH	E	CASH output for DRAM bank 0
		PB2		Can be configured as general purpose I/O port when CSOH is not used.
99	2	DW0	E	WE output for DRAM bank 0 ("L" active)
		PB3		Can be configured as general purpose I/O port when $\overline{\mathrm{DW}} \mathbf{0}$ is not used.
100	3	RAS1	E	RAS output for DRAM bank 1
		PB4		Can be configured as general purpose I/O port when RAS1 and EOP2 are not used.
		EOP2		DMAC EOP output (ch. 2) This function is available when DMAC EOP output is enabled.
1	4	CS1L	E	CASL output for DRAM bank 1
		PB5		Can be configured as general purpose I/O port when CS1L and DREQ are not used.
		DREQ2		External transfer request input pin for DMA This pin is used for input when external trigger is selected to cause DMAC operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
2	5	CS1H	E	CASH output for DRAM bank 1
		PB6		Can be configured as general purpose I/O port when CS1H and DACK2 are not used.
		DACK2		External transfer request accept output pin for DMAC (ch. 2) This function is available when transfer request output for DMAC is enabled.
3	6	DW1	E	
		PB7		Can be configured as general purpose I/O port when $\overline{\mathrm{DW} 1}$ is not used.
16 to 18	19 to 21	MD0 to MD2	F	Mode pins 0 to 2 MCU basic operation mode is set by these pins. Directly connect these pins with Vcc or Vss for use.
92	95	X0	A	Clock (oscillator) input
91	94	X1	A	Clock (oscillator) output
14	17	$\overline{\text { RST }}$	B	External reset input
12	15	$\overline{\mathrm{NMI}}$	G	NMI (non-maskable interrupt pin) input ("L" active)

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 95, \\ & 94 \end{aligned}$	$\begin{aligned} & 98, \\ & 97 \end{aligned}$	$\begin{aligned} & \hline \text { INTO, } \\ & \text { INT1 } \end{aligned}$	E	External interrupt request input pins These pins are used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from these pins unless such output is made intentionally.
		$\begin{aligned} & \hline \mathrm{PE0}, \\ & \mathrm{PE} 1 \end{aligned}$		Can be configured as general purpose I/O ports when INTO and INT1 are not used.
89	92	INT2	E	External interrupt request input pin This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		SC1		Clock I/O pin for UART1 Clock output is available when clock output of UART1 is enabled.
		PE2		Can be configured as general purpose I/O port when INT2 and SC1 are not used. This function is available when UART1 clock output is disabled.
88	91	INT3	E	External interrupt request input pin This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		SC2		UART2 clock I/O pin Clock output is available when UART2 clock output is enabled.
		PE3		Can be configured as general purpose I/O port when INT3 and SC2 are not used. This function is available when UART2 clock output is disabled.
$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 90, \\ & 89 \end{aligned}$	$\begin{aligned} & \text { DREQ0, } \\ & \text { DREQQ1 } \end{aligned}$	E	External transfer request input pins for DMA These pins are used for input when external trigger is selected to cause DMAC operation, and it is necessary to disable output for other functions from these pins unless such output is made intentionally.
		$\begin{aligned} & \text { PE4, } \\ & \text { PE5 } \end{aligned}$		Can be configured as general purpose I/O ports when DREQ0 and DREQ1 are not used.
85	88	DACK0	E	External transfer request acknowledge output pin for DMAC (ch. 0) This function is available when transfer request output for DMAC is enabled.
		PE6		Can be configured as general purpose I/O port when DACKO is not used. This function is available when transfer request acknowledge output for DMAC or DACKO output is disabled.

*1: FPT-100P-M05
(Continued)
: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
84	87	DACK1	E	External transfer request acknowledge output pin for DMAC (ch. 1) This function is available when transfer request output for DMAC is enabled.
		PE7		Can be configured as general purpose I/O port when DACK1 is not used. This function is available when transfer request output for DMAC or DACK1 output is disabled.
76	79	SIO	E	UART0 data input pin This pin is used for input during UARTO is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		TRGO		PWM timer external trigger input pin (ch.0) This pin is used for input during PWM timer external trigger is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		PF0		Can be configured as general purpose I/O port when SIO and TRG0 are not used.
77	80	SOO	E	UARTO data output pin This function is available when UART0 data output is enabled.
		TRG1		PWM timer external trigger input pin This function is available when serial data output of PF1, UART0 are disabled.
		PF1		Can be configured as general purpose I/O port when SOO and TRG1 are not used. This function is available when serial data output of UARTO is disabled.
78	81	SC0	E	UARTO clock I/O pin Clock output is available when UARTO clock output is enabled.
		ОСРАЗ		PWM timer output pin This function is available when PWM timer output is enabled.
		PF2		Can be configured as general purpose I/O port when SCO and OCPA3 are not used. This function is available when UARTO clock output is disabled.
79	82	SI1	E	UART1 data input pin This pin is used for input during UART1 is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		TRG2		PWM timer external trigger input pin This pin is used for input during PWM timer external trigger is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		PF3		Can be configured as general purpose I/O port when SII and TRG2 are not used.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
80	83	SO1	E	UART1 data output pin This function is available when UART1 data output is enabled.
		TRG3		PWM timer external trigger input pin This function is available when PF4, UART1 data outputs are disabled.
		PF4		Can be configured as general purpose I/O port when SO1 and TRG3 are not used. This function is available when UART1 data output is disabled.
81	84	SI2	E	UART2 data input pin This pin is used for input during UART2 is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
		OCPA1		PWM timer output pin This function is available when PWM timer output is enabled.
		PF5		Can be configured as general purpose I/O port when SI2 and OCPA2 are not used.
82	85	SO2	E	UART2 data output pin This function is available when UART2 data output is enabled.
		OCPA2		PWM timer output pin This function is available when PWM timer output is enabled.
		PF6		Can be configured as general purpose I/O port when SO2 and OCPA2 are not used. This function is available when UART2 data output is disabled.
83	86	OCPAO	E	PWM timer output pin This function is available when PWM timer output is enabled.
		PF7		Can be configured as a port when OCPAO and $\overline{\text { ATG }}$ are not used. This function is available when PWM timer output is disabled.
		$\overline{\text { ATG }}$		External trigger input pin for A/D converter This pin is used for input when external trigger is selected to cause A/D converter operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
72 to 75	75 to 78	ANO to AN3	D	Analog input pins of A/D converter
69	72	AVcc	-	Power supply pin (Vcc) for A/D converter
70	73	AVRH	-	Reference voltage input (high) for A/D converter Make sure to turn on and off this pin with potential of AVRH or more applied to Vcc.
71	74	AVss, AVRL	-	Power supply pin (Vss) for A/D converter and reference voltage input pin (low)

*1: FPT-100P-M05
*2: FPT-100P-M06
(Continued)

MB91F109

(Continued)

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP* ${ }^{\text {2 }}$			
$\begin{gathered} 4, \\ 13, \\ 43, \\ 93 \end{gathered}$	$\begin{gathered} 7, \\ 16, \\ 46, \\ 96 \end{gathered}$	V cc	-	Power supply pin (Vcc) for digital circuit Always power supply pin (Vcc) must be connected to the power supply
$\begin{aligned} & 15, \\ & 40, \\ & 65, \\ & 90 \end{aligned}$	$\begin{aligned} & 18, \\ & 43, \\ & 68, \\ & 93 \end{aligned}$	Vss	-	Earth level (Vss) for digital circuit

*1: FPT-100P-M05
*2: FPT-100P-M06
Note : In most of the above pins, I/O port and resource I/O are multiplexed e.g. xxx/Pxxx. In case of conflict between output of I/O port and resource I/O, priority is always given to the output of resource I/O.

DRAM CONTROL PIN

Pin name	Data bus 16-bit mode		Data bus 8-bit mode	Remarks
	2CAS/1WR mode	1CAS/2WR mode		
RAS0	Area 4 RAS	Area 4 RAS	Area 4 RAS	Correspondence of "L" " H " to lower address 1 bit (AO) in data bus 16bit mode "L": "0" "H": "1" CASL: CAS which AO corresponds to " 0 " area CASH: CAS which AO corresponds to "1" area WEL: WE which AO corresponds to " 0 " area WEH: WE which A0 corresponds to "1" area
RAS1	Area 5 RAS	Area 5 RAS	Area 5 RAS	
CSOL	Area 4 CASL	Area 4 CAS	Area 4 CAS	
CSOH	Area 4 CASH	Area 4 WEL	Area 4 CAS	
CS1L	Area 5 CASL	Area 5 CAS	Area 5 CAS	
CS1H	Area 5 CASH	Area 5 WEL	Area 5 CAS	
DW0	Area $4 \overline{\mathrm{WE}}$	Area $4 \overline{\mathrm{WEH}}$	Area $4 \overline{\mathrm{WE}}$	
DW1	Area $5 \overline{\mathrm{WE}}$	Area $5 \overline{\mathrm{WEH}}$	Area $5 \overline{\mathrm{WE}}$	

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation feedback resistance $1 \mathrm{M} \Omega$ approx. With standby control
B		- CMOS level hysteresis input Without standby control With pull-up resistance
C	Standby control signal	- CMOS level I/O With standby control
D		- Analog input

(Continued)
(Continued)

Type	Circuit	Remarks
E		- CMOS level output - CMOS level hysteresis input With standby control
F		- CMOS level input Without standby control
G		- CMOS level hysteresis input Without standby control

MB91F109

HANDLING DEVICES

1. Preventing Latchup

In CMOS ICs, applying voltage higher than V_{cc} or lower than V_{ss} to input/output pin or applying voltage over rating across $V_{c c}$ and $V_{s s}$ may cause latchup.

This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the device. Make sure to prevent the voltage from exceeding the maximum rating.

Take care that the analog power supply ($\mathrm{AV} \mathrm{cc}, \mathrm{AVRH}$) and the analog input do not exceed the digital power supply (V_{cc}) when the analog power supply turned on or off.

2. Treatment of Unused Pins

Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.

3. External Reset Input

It takes at least 5 machine cycle to input "L" level to the RST pin and to ensure inner reset operation properly.

4. Remarks for External Clock Operation

When external clock is selected, supply it to X0 pin generally, and simultaneously the opposite phase clock to X0 must be supplied to X1 pin. However, in this case the stop mode must not be used (because X1 pin stops at " H " output in stop mode).

And can be used to supply only to $\mathrm{X0}$ pin with 5 V power supply at 12.5 MHz and less than.

- Using an external clock

Using an external clock (normal)
Note: Can not be used stop mode (oscillation stop mode).

Using an external clock (can be used at 12.5 MHz and less than.)
(3.3 V power supply only)

5. Power Supply Pins

When there are several V_{cc} and V_{ss} pins, each of them is equipotentially connected to its counterpart inside of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to observe the total output current standard, connect all $\mathrm{Vcc}_{\text {cc }}$ and $\mathrm{V} s \mathrm{~s}^{\text {pins to the power supply or GND. }}$
It is preferred to connect Vcc and V ss of MB91F109 to power supply with minimal impedance possible.
It is also recommended to connect a ceramic capacitor as a bypass capacitor of about $0.1 \mu \mathrm{~F}$ between Vcc and Vss at a position as close as possible to MB91F109.
6. Crystal Oscillator Circuit

Noises around X0 and X1 pins may cause malfunctions of MB91F109. In designing the PC board, layout X0, X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.
It is strongly recommended to design PC board so that X1 and X0 pins are surrounded by grounding area for stable operation.
7. Turning-on Sequence of A/D Converter Power Supply and Analog Input

Make sure to turn on the digital power supply (V cc) before turning on the A / D converter ($\mathrm{AV} \mathrm{cc}, \mathrm{AVRH}$) and applying voltage to analog input (ANO to AN3).
Make sure to turn off digital power supply after power supply to A/D converters and analog inputs have been switched off. (There are no such limitations in turning on power supplies. Analog and digital power supplies may be turned on simultaneously.) Make sure that AVRH never exceeds AVcc when turning on/off power supplies.

8. Treatment of N.C. Pins

Make sure to leave N.C. pins open.

9. Fluctuation of Power Supply Voltage

Warranty range for normal operation against fluctuation of power supply voltage V_{cc} is as given in rating. However, sudden fluctuation of power supply voltage within the warranty range may cause malfunctions. It is recommended to make every effort to stabilize the power supply voltage to IC. It is also recommended that by controlling power supply as a reference of stabilizing, Vcc ripple fluctuation (P-P value) at the commercial frequency (50 Hz to 60 Hz) should be less than 10% of the standard Vcc value and the transient regulation should be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous deviation like turning off the power supply.

10. Mode Setting Pins (MD0 to MD2)

Connect mode setting pins (MD0 to MD2) directly to Vcc or Vss .
Arrange each mode setting pin and $V_{c c}$ or $V_{s s}$ patterns on the printed circuit board as close as possible and make the impedance between them minimal to prevent mistaken entrance to the test mode caused by noises.
11. Turning on the Power Supply

When turning on the power supply, never fail to start from setting the RST pin to "L" level. And after the power supply voltage goes to Vcc level, at least after ensuring the time for 5 machine cycle, then set to " H " level.

MB91F109

12. Pin Condition at Turning on the Power Supply

The pin condition at turning on the power supply is unstable. The circuit starts being initialized after turning on the power supply and then starting oscillation and then the operation of the internal regulator becomes stable. So it takes about 42 ms for the pin to be initialized from the oscillation starting at the source oscillation 12.5 MHz . Take care that the pin condition may be output condition at initial unstable condition.
13. Source Oscillation Input at Turning on the Power Supply

At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing waiting.
14. Initialization

Some internal resistors initialized only via power on reset are embedded in the device. To initialize these resistors, run power on reset by returning on the power supply or to set $\overline{\text { RST }}$ pin to " H " level.

BLOCK DIAGRAM

Note : Pins are display for functions (Actually some pins are multiplexer).
When using REALOS, time control should be done by using external interrupt or inner timer.

MB91F109

CPU CORE

1. Memory Space

The FR family has a logical address space of 4 Gbytes (2^{32} bytes) and the CPU linearly accesses the memory space.

- Memory space

- Memory Space

*: Direct addressing area

The following areas on the memory space are assigned to direct addressing area for I/O. In these areas, an address can be specified in a direct operand of a code.
Direct areas consists of the following areas dependent on accessible data sizes.
Byte data access: 000 н to 0FFн
Half word data access: 000 н to 1 FFH $_{H}$
Word data access: 000н to 3FFн
Notes: Access to the external area can be execute in the single chip mode.
To access to the external area, select internal ROM external bus mode via mode resistor.
Never execute data access to the instruction ROM area.

MB91F109

2. Registers

The FR family has two types of registers; dedicated registers embedded on the CPU and general-purpose registers on memory.

- Dedicated registers

Program counter (PC): 32-bit length, indicates the location of the instruction to be executed.
Program status (PS): 32-bit length, register for storing register pointer or condition codes
Table base register (TBR): Holds top address of vector table used in EIT (Exceptional/Interrupt/Trap) processing.
Return pointer (RP): Holds address to resume operation after returning from a subroutine.
System stack pointer (SSP): Indicates system stack space.
User's stack pointer (USP): Indicates user's stack space.
Multiplication/division result register (MDH/MDL): 32-bit length, register for multiplication/division

- Program status (PS)

The PS register is for holding program status and consists of a condition code register (CCR), a system condition code register (SCR) and a interrupt level mask register (ILM).

MB91F109

- Condition code register (CCR)

S-flag: \quad Specifies a stack pointer used as R15.
I-flag: \quad Controls user interrupt request enable/disable.
N-flag: Indicates sign bit when division result is assumed to be in the 2's complement format.
Z-flag: Indicates whether or not the result of division was " 0 ".
V-flag: Assumes the operand used in calculation in the 2's complement format and indicates whether or not overflow has occurred.
C-flag: Indicates if a carry or borrow from the MSB has occurred.

- System condition code register (SCR)

T-flag: \quad Specifies whether or not to enable step trace trap.

- Interrupt level mask register (ILM)

ILM4 to ILMO: Register for holding interrupt level mask value. The value held by this register is used as a level mask. When an interrupt request issued to the CPU is higher than the level held by ILM, the interrupt request is accepted.

ILM4	ILM3	ILM2	ILM1	ILM0	Interrupt level	High-low
0	0	0	0	0	0	High
		\vdots			:	
0	1	0	0	0	15	
		!			\vdots	
1	1	1	1	1	31	

MB91F109

GENERAL-PURPOSE REGISTERS

R0 to R15 are general-purpose registers embedded on the CPU. These registers functions as an accumulator and a memory access pointer (field for indicating address).

- Register bank structure

32 bits			
		Initial value	
R0		XXXX	XXXX ${ }_{\text {H }}$
R1			
	:		
R12			
R13	AC (accumulator)		
R14	FP (frame pointer)	XXXX	$\mathrm{XXXX}_{\text {H }}$
R15	SP (stack pointer)	0000	0000H

Of the above 16 registers, following registers have special functions. To support the special functions, part of the instruction set has been sophisticated to have enhanced functions.

R13: Virtual accumulator (AC)
R14: Frame pointer (FP)
R15: Stack pointer (SP)
Upon reset, values in R0 to R14 are not fixed. Value in R15 is initialized to be 00000000 H (SSP value).

MB91F109

SETTING MODE

1. Pin

- Mode setting pins and modes

Mode setting pins		Mode name	Reset vector access area	External data bus width	Bus mode	
MD2	MD1	MD0		External vector mode 0	External	8 bits
0	0	0	External ROM/external bus			
0	0	1	External vector mode 1	External	16 bits	mode
0	1	0	-	-	-	Inhibited
0	1	1	Internal vector mode	Internal	(Mode register)	Single-chip mode*
1	-	-	-	-	-	Not use

*: MB91F109 support single-chip mode.

2. Registers

- Mode setting registers (MODR) and modes

- Bus mode setting bits and functions

M1	M0	Functions	Note
0	0	Single-chip mode	
0	1	Internal ROM/external bus mode	
1	0	External ROM/external bus mode	
1	1	-	Inhibited

I/O MAP

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value
000000н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXX ${ }_{\text {в }}$
000001н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXв
000002н	(Vacancy)				
000003н					
000004н	PDR7	Port 7 data register	R/W	Port 7	$------\chi_{\text {в }}$
000005н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXX ${ }_{\text {в }}$
000006н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXX ${ }_{\text {в }}$
000007н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX ${ }_{\text {в }}$
000008н	PDRB	Port B data register	R/W	Port B	XXXXXXXX ${ }_{\text {в }}$
000009н	PDRA	Port A data register	R/W	Port A	$-X X X X X X{ }^{\text {¢ }}$
00000Ан	(Vacancy)				
00000Вн	PDR8	Port 8 data register	R/W	Port 8	$--X X X X X{ }_{\text {в }}$
$\begin{aligned} & 00000 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 000011 \mathrm{H} \end{aligned}$	(Vacancy)				
000012н	PDRE	Port E data register	R/W	Port E	XXXXXXXX ${ }_{\text {в }}$
000013н	PDRF	Port F data register	R/W	Port F	XXXXXXXX ${ }_{\text {в }}$
$\begin{aligned} & \text { 000014H } \\ & \text { to } \\ & 00001 \mathrm{~B}_{\mathrm{H}} \end{aligned}$	(Vacancy)				
00001CH	SSR0	Serial status register 0	R/W	UART0	00001-00 в
00001的	SIDR0/SODR0	Serial input data register 0/serial output data register 0	R/W		XXXXXXXXв
00001Eн	SCR0	Serial control register 0	R/W		00000100 в
00001FH	SMR0	Serial mode register 0	R/W		00--0-00в
000020н	SSR1	Serial status register 1	R/W	UART1	$00001-00$ в
000021H	SIDR1/SODR1	Serial input data register 1/serial output data register 1	R/W		XXXXXXXXв
000022н	SCR1	Serial control register 1	R/W		00000100 в
000023н	SMR1	Serial mode register 1	R/W		00--0-00в
000024	SSR2	Serial status register 2	R/W	UART2	$00001-00$ в
000025	SIDR2/SODR2	Serial input data register 2/serial output data register 2	R/W		XXXXXXXXв
000026н	SCR2	Serial control register 2	R/W		00000100 в
000027н	SMR2	Serial mode register 2	R/W		00--0-00в

(Continued)

MB91F109

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value			
000028н	TMRLR0	16-bit reload register 0	W	16-bitreload timer 0	XXXXXXXXв			
000029н					XXXXXXXX			
00002Ан	TMR0	16-bit timer register 0	R		XXXXXXXX			
00002Вн					XXXXXXXX			
00002C ${ }_{\text {H }}$	(Vacancy)							
00002D								
00002Eн	TMCSR0	16-bit reload timer control status register 0	R/W	16-bit reload timer 0	----0000в			
00002F ${ }_{\text {H }}$					00000000 в			
000030н	TMRLR1	16-bit reload register 1	W	16-bit reload timer 1	XXXXXXXX			
000031н					ХXXXXXXX			
000032н	TMR1	16-bit timer register 1	R		ХXXXXXXX			
000033н					XXXXXXXX			
000034н	(Vacancy)							
000035								
000036н	TMCSR1	16-bit reload timer control status register 1	R/W	16-bitreload timer 1	----0000в			
000037н					0000000 в			
000038н	ADCR	A/D converter data register	R	10-bit A/D converter	$000000 \times$ ¢в			
000039н					XXXXXXXXв			
00003Ан	ADCS	A/D converter control status register	R/W		00000000 в			
00003Вн					00000000 в			
00003CH	TMRLR2	16-bit reload register 2	W	16-bit reload timer 2	XXXXXXXX			
00003D ${ }_{\text {н }}$					XXXXXXXXB			
00003Ен	TMR2	16-bit timer register 2	R					
00003F ${ }_{\text {H }}$					XXXXXXXX			
000040н	(Vacancy)							
000041н								
000042н	TMCSR2	16-bit reload timer control status register 2	R/W	16-bit reload timer 2	----0000в			
000043н					0000000 в			
$\begin{gathered} \text { 000044н } \\ \text { to } \\ 000077 \mathrm{H} \end{gathered}$	(Vacancy)							

(Continued)

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value
000078н	UTIMO/UTIMRO	U-TIMER register ch. 0 /U-TIMER reload register ch. 0	R/W	U-TIMER 0	00000000 в
000079н					00000000 в
00007Ан	(Vacancy)				
00007Вн	UTIMC0	U-TIMER control register ch. 0	R/W	U-TIMER 0	$0--00001$ в
00007С ${ }_{\text {H }}$	UTIM1/UTIMR1	U-TIMER register ch. 1/reload register ch. 1	R/W	U-TIMER 1	00000000 в
00007D					00000000 в
00007Ен	(Vacancy)				
00007Fн	UTIMC1	U-TIMER control register ch. 1	R/W	U-TIMER 1	0--00001в
000080н	UTIM2/UTIMR2	U-TIMER register ch. 2/U-TIMER reload register ch. 2	R/W	U-TIMER 2	00000000 в
000081н					00000000 в
000082н	(Vacancy)				
000083н	UTIMC2	U-TIMER control register ch. 2	R/W	U-TIMER 2	$0--00001$ в
$\begin{gathered} \text { 000084н } \\ \text { to } \\ 000093 \text { н } \end{gathered}$	(Vacancy)				
000094н	EIRR	External interrupt cause register	R/W	External interrupt/ NMI	00000000 в
000095н	ENIR	Interrupt enable register	R/W		00000000 в
$\begin{gathered} \text { 000096н } \\ \text { to } \\ 000098 \text { н } \end{gathered}$	(Vacancy)				
000099н	ELVR	External interrupt request level setting register	R/W	External interrupt/ NMI	00000000 в
$\begin{aligned} & 00009 \text { Aн }^{\text {to }} \\ & 0000 \mathrm{D} 1_{\mathrm{H}} \end{aligned}$	(Vacancy)				
0000D2н	DDRE	Port E data direction register	W	Port E	00000000 в
0000D3н	DDRF	Port F data direction register	W	Port F	00000000 в
$\begin{gathered} \text { 0000D4H } \\ \text { to } \\ 0000 \mathrm{DBH} \end{gathered}$	(Vacancy)				
0000DCH	GCN1	General control register 1	R/W	PWM timer 1	00110010 в
0000DDн					00010000 в
0000DEн	(Vacancy)				
0000DF	GCN2	General control register 2	R/W	PWM timer 2	00000000 в

(Continued)

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value
0000EOH	PTMR0	PWM timer register 0	R	PWM timer 0	11111111 в
0000E1н					11111111 в
0000E2н	PCSR0	PWM cycle setting register 0	W		XXXXXXXX ${ }_{\text {в }}$
0000E3н					XXXXXXXX ${ }^{\text {¢ }}$
0000E4н	PDUT0	PWM duty setting register 0	W		XXXXXXXXB
0000E5H					XXXXXXXX
0000E6н	PCNH0	Control status register H 0	R/W		0000000 -
0000E7H	PCNLO	Control status register L 0	R/W		0000000 в
0000E8H	PTMR1	PWM timer register 1	R	PWM timer 1	11111111 в
0000E9н					11111111 в
0000ЕАн	PCSR1	PWM cycle setting register 1	W		XXXXXXXX ${ }_{\text {в }}$
0000ЕВн					XXXXXXXX
0000ECH	PDUT1	PWM duty setting register 1	W		XXXXXXXX ${ }^{\text {¢ }}$
0000ED					XXXXXXXX
0000ЕЕн	PCNH1	Control status register H 1	R/W		0000000 в
0000EFH	PCNL1	Control status register L 1	R/W		0000000 в
0000FOH	PTMR2	PWM timer register 2	R	PWM timer 2	11111111 в
0000F1н					11111111 в
0000F2н	PCSR2	PWM cycle setting register 2	W		XXXXXXXX ${ }_{\text {в }}$
0000F3н					XXXXXXXX ${ }^{\text {¢ }}$
0000F4н	PDUT2	PWM duty setting register 2	W		XXXXXXXX
0000F5н					XXXXXXXX
0000F6н	PCNH2	Control status register H 2	R/W		0000000 -
0000F7н	PCNL2	Control status register L 2	R/W		00000000 в
0000F8H	PTMR3	PWM timer register 3	R	PWM timer 3	11111111 в
0000F9H					11111111 B
0000FAн	PCSR3	PWM cycle setting register 3	W		XXXXXXXX ${ }_{\text {в }}$
0000FB ${ }_{\text {н }}$					XXXXXXXX
0000FCH	PDUT3	PWM duty setting register 3	W		XXXXXXXX ${ }_{\text {в }}$
0000FDн					XXXXXXXX
0000FEн	PCNH3	Control status register H 3	R/W		0000000 -
0000FFH	PCNL3	Control status register L 3	R/W		0000000 в

(Continued)

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value
$\begin{gathered} \text { 000100н } \\ \text { to } \\ 0001 \mathrm{FF}^{2} \end{gathered}$	(Vacancy)				
000200н	DPDP	DMAC parameter descriptor pointer	R/W	DMA controller (DMAC)	XXXXXXXXв
000201н					XXXXXXXXB
000202н					XXXXXXXX
000203н					X0000000в
000204н	DACSR	DMAC control status register	R/W		00000000 в
000205н					00000000 в
000206н					00000000 в
000207н					00000000 в
000208н	DATCR	DMAC pin control register	R/W		XXXXXXXX
000209н					XX000000в
00020Ан					XX000000в
00020Вн					XX000000в
$\begin{gathered} 00020 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 0003 \mathrm{EF} \end{gathered}$	(Vacancy)				
0003FOн	BSD0	Bit search module 0-detection data register	R/W	Bit search module	XXXXXXXXв
0003F1н					XXXXXXXX
0003F2н					XXXXXXXX
0003F3н					XXXXXXXX
0003F4н	BSD1	Bit search module 1-detection data register	R/W		XXXXXXXX
0003F5н					XXXXXXXX
0003F6н					XXXXXXXX
0003F7н					XXXXXXXX
0003F8н					XXXXXXXX
0003F9н	BSDC	Bit search module transition-	W		XXXXXXXXB
0003FAн	S	detection data register			XXXXXXXX
0003FBн					XXXXXXXX
0003FCH	BSRR	Bit search module detection result register	R		XXXXXXXXB
0003FD					XXXXXXXXв
0003FEн					XXXXXXXX
0003FFH					XXXXXXXX

(Continued)

Address	Register name （abbreviated）	Register name	Read／write	Resources name	Initial value
000400н	ICR00	Interrupt control register 0	R／W		－－－11111 в
000401н	ICR01	Interrupt control register 1	R／W		－－－11111в
000402н	ICR02	Interrupt control register 2	R／W		－－－11111в
000403н	ICR03	Interrupt control register 3	R／W		－－－11111в
000404н	ICR04	Interrupt control register 4	R／W		－－－11111в
000405н	ICR05	Interrupt control register 5	R／W		－－－11111в
000406н	ICR06	Interrupt control register 6	R／W		－－－11111в
000407н	ICR07	Interrupt control register 7	R／W		－－－11111в
000408н	ICR08	Interrupt control register 8	R／W		－－－11111в
000409н	ICR09	Interrupt control register 9	R／W		－－－11111в
00040Ан	ICR10	Interrupt control register 10	R／W		－－－11111в
00040Вн	ICR11	Interrupt control register 11	R／W		－－－11111в
00040С ${ }_{\text {H }}$	ICR12	Interrupt control register 12	R／W		－－－11111в
00040D	ICR13	Interrupt control register 13	R／W		－－－11111в
00040Eн	ICR14	Interrupt control register 14	R／W		－－－11111в
00040FH	ICR15	Interrupt control register 15	R／W	号	---11111 в
000410н	ICR16	Interrupt control register 16	R／W	controller	－－－11111в
000411н	ICR17	Interrupt control register 17	R／W		－－－11111в
000412н	ICR18	Interrupt control register 18	R／W		－－－11111в
000413н	ICR19	Interrupt control register 19	R／W		－－－11111в
000414н	ICR20	Interrupt control register 20	R／W		－－－11111в
000415 ${ }_{\text {H }}$	ICR21	Interrupt control register 21	R／W		－－－11111 в
000416н	ICR22	Interrupt control register 22	R／W		－－－11111в
000417н	ICR23	Interrupt control register 23	R／W		－－－11111в
000418н	ICR24	Interrupt control register 24	R／W		－－－11111в
000419н	ICR25	Interrupt control register 25	R／W		－－－11111в
00041Aн	ICR26	Interrupt control register 26	R／W		－－－11111в
00041В	ICR27	Interrupt control register 27	R／W		－－－11111в
00041桭	ICR28	Interrupt control register 28	R／W		－－－11111в
00041的	ICR29	Interrupt control register 29	R／W		---11111 в
00041Eн	ICR30	Interrupt control register 30	R／W		－－－11111в
00041FH	ICR31	Interrupt control register 31	R／W		－－－11111в

（Continued）

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value
$\begin{gathered} 000420 \text { н } \\ \text { to } \\ 00042 \text { Ен }^{2} \end{gathered}$	(Vacancy)				
00042FH	ICR47	Interrupt control register 47	R/W	Interrupt controller	---11111в
000430н	DICR	Delayed interrupt control register	R/W		-------0 в
000431н	HRCL	Hold request cancel request level setting register	R/W		---11111в
$\begin{gathered} 000432 \mathrm{H} \\ \text { to } \\ 00047 \mathrm{FH} \end{gathered}$	(Vacancy)				
000480н	RSRR/WTCR	Reset cause register/ watchdog cycle control register	R/W	Clock generator	$1 \mathrm{XXXX}-00$ в
000481н	STCR	Standby control register	R/W		000111 - в
000482н	PDRR	DMA controller request squelch register	R/W		----0000в
000483н	CTBR	Timebase timer clear register	W		XXXXXXXXв
000484н	GCR	Gear control register	R/W		110011-1в
000485	WPR	Watchdog reset occurrence postpone register	W		ХХХХХХХХв
000486H ${ }^{\text {000487H }}$	(Vacancy)				
000488н	PCTR	PLL control register	R/W	PLL control	00--0---в
$\begin{gathered} 000489_{\mathrm{H}} \\ \text { to } \\ 0005 \mathrm{FF}_{\mathrm{H}} \end{gathered}$	(Vacancy)				
000600н	DDR3	Port 3 data direction register	W	Port 3	00000000 в
000601н	DDR2	Port 2 data direction register	W	Port 2	00000000 в
000602н 000603н	(Vacancy)				
000604н	DDR7	Port 7 data direction register	W	Port 7	-------0 в
000605н	DDR6	Port 6 data direction register	W	Port 6	00000000 в
000606н	DDR5	Port 5 data direction register	W	Port 5	00000000 в
000607н	DDR4	Port 4 data direction register	W	Port 4	00000000 в
000608н	DDRB	Port B data direction register	W	Port B	00000000 в
000609н	DDRA	Port A data direction register	W	Port A	-0000000в
00060Ан	(Vacancy)				
00060В ${ }_{\text {н }}$	DDR8	Port 8 data direction register	W	Port 8	--000000в

(Continued)

(Continued)
(Continued)

Address	Register name (abbreviated)	Register name	Read/write	Resources name	Initial value
$\begin{array}{\|c\|} \hline \begin{array}{c} 000630_{\mathrm{H}} \\ \text { to } \\ 0007 \mathrm{BF}_{\mathrm{H}} \end{array} \\ \hline \end{array}$	(Vacancy)				
0007COH	FSTR	FLASH memory status register	R/W	FLASH memory	$000 \times X X X 0$ в
$\left.\begin{array}{\|c\|} \hline 0007 \mathrm{C} 1_{\mathrm{H}} \\ \text { to } \\ 0007 \mathrm{FD} \end{array} \right\rvert\,$	(Vacancy)				
0007FEн	LER	Little endian register	W	External bus interface	-----000в
0007FF	MODR	Mode register	W		XXXXXXXXв

About Programming

R/W: Readable and writable
R : Read only
W: Write only

Explanation of initial values

0 : The initial value of this bit is " 0 ".
1: The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.
-: This bit is not used. The initial value of this bit is undefined.
RMW system instructions (RMW: Read Modify Write)

AND	Rj,	OR	Rj, @ Ri	OR	Ri
DH	Rj, @ Ri	ORH	Rj, @ Ri	ORH	
ANDB	Rj, @ Ri	ORB	Rj, @ Ri	EORB	
BANDL	\# μ, @ Ri	BORL	\# μ 4, @ Ri	BEORL	\# 4 4,
BANDH	\# μ 4, @ Ri	BORH	\# 4 4, @ Ri	BEOR	\# 4 4,

Notes: - Never execute a RMW system instruction to the resistor has a write only bit.

- The area "vacancy" on the I/O map is reserved area. Access to this area are deal with to an internal area. No access signals to the external area would be generated.

MB91F109

■ INTERRUPT CAUSES, INTERRUPT VECTORS
AND INTERRUPT CONTROL REGISTER ALLOCATIONS

Interrupt causes	Interrupt number		Interrupt level		TBR default address
	Decimal	Hexadecimal	Register	Offset	
Reset	0	00	-	3FCH	000FFFFCC
Reserved for system	1	01	-	3F8H	000FFFFF8н
Reserved for system	2	02	-	3F4н	000FFFFF4н
Reserved for system	3	03	-	3F0н	000FFFFF0н
Reserved for system	4	04	-	3ECH	000FFFECH
Reserved for system	5	05	-	3E8H	000FFFE8н
Reserved for system	6	06	-	3E4н	000FFFFE4н
Reserved for system	7	07	-	3E0н	000FFFFE0н
Reserved for system	8	08	-	3DCH	000FFFDC ${ }_{\text {н }}$
Reserved for system	9	09	-	3D8н	000FFFD8н
Reserved for system	10	OA	-	3D4н	000FFFD4н
Reserved for system	11	0B	-	3D0н	000FFFDD ${ }_{\text {н }}$
Reserved for system	12	OC	-	3 CCH	000FFFCCH
Reserved for system	13	OD	-	3C8н	000FFFC8н
Exception for undefined instruction	14	0E	-	3C4H	000FFFC4н
NMI request	15	OF	Fifixed	3C0н	000FFFCOH
External interrupt 0	16	10	ICR00	3BCH	000FFFBCH
External interrupt 1	17	11	ICR01	3B8н	000FFFB8
External interrupt 2	18	12	ICR02	3В4н	000FFFB44
External interrupt 3	19	13	ICR03	3B0н	000FFFFB0н
UART0 receive complete	20	14	ICR04	ЗАС ${ }_{\text {H }}$	000FFFACH
UART1 receive complete	21	15	ICR05	3А8н	000FFFA8н
UART2 receive complete	22	16	ICR06	3А4н	000FFFA4н
UART0 transmit complete	23	17	ICR07	3A0н	000FFFA0н
UART1 transmit complete	24	18	ICR08	39CH	000FFF9CH
UART2 transmit complete	25	19	ICR09	398H	000FFF98н
DMAC0 (complete, error)	26	1A	ICR10	394н	000FFF94н
DMAC1 (complete, error)	27	1B	ICR11	390н	000FFF90н
DMAC2 (complete, error)	28	1C	ICR12	38С ${ }_{\text {H }}$	000FFF8C ${ }_{\text {н }}$
DMAC3 (complete, error)	29	1D	ICR13	388H	000FFF88н
DMAC4 (complete, error)	30	1E	ICR14	384н	000FFF84н
DMAC5 (complete, error)	31	1F	ICR15	380 H	000FFF80н

(Continued)

Interrupt causes	Interrupt number		Interrupt level		TBR default address
	Decimal	Hexadecimal	Register	Offset	
DMAC6 (complete, error)	32	20	ICR16	37 CH	000FFF77 ${ }_{\text {H }}$
DMAC7 (complete, error)	33	21	ICR17	378	000FFF784
A/D converter (successive approximation conversion type)	34	22	ICR18	374	000FFFF74
16-bit reload timer 0	35	23	ICR19	370н	000FFFF70н
16-bit reload timer 1	36	24	ICR20	36 CH	000FFF6CH
16-bit reload timer 2	37	25	ICR21	368н	000FFF684
PWM 0	38	26	ICR22	364	000FFF664
PWM 1	39	27	ICR23	360н	000FFFF60н
PWM 2	40	28	ICR24	35 CH	000FFF5CH
PWM 3	41	29	ICR25	358н	000FFF588
U-TIMER 0	42	2A	ICR26	354	000FFF554
U-TIMER 1	43	2B	ICR27	350н	000FFFF50н
U-TIMER 2	44	2 C	ICR28	34 CH	000FFF4CH
FLASH memory	45	2D	ICR29	348 H	000FFFF48 ${ }^{\text {H }}$
Reserved for system	46	2E	ICR30	344	000FFFF44
Reserved for system	47	2F	ICR31	340н	000FFFF40н
Reserved for system	48	30	-	33 CH	000FFF3CH
Reserved for system	49	31	-	338	000FFFF38
Reserved for system	50	32	-	334	000FFF34
Reserved for system	51	33	-	330н	000FFFF30н
Reserved for system	52	34	-	32 CH	000FFF2CH
Reserved for system	53	35	-	328 H	000FFF28 ${ }^{\text {H }}$
Reserved for system	54	36	-	324	000FFF24 ${ }^{\text {¢ }}$
Reserved for system	55	37	-	320н	000FFF20н
Reserved for system	56	38	-	31 CH	000FFF1CH
Reserved for system	57	39	-	318	000FFFF18
Reserved for system	58	3A	-	314 H	000FFFF14
Reserved for system	59	3B	-	310н	000FFFF10н
Reserved for system	60	3C	-	30 CH	000FFFOCH
Reserved for system	61	3D	-	308 н	000FFFF08н
Reserved for system	62	3E	-	304	000FFFF04
Delayed interrupt cause bit	63	3F	ICR47	300н	000FFFF00н

(Continued)

MB91F109

(Continued)

Interrupt causes	Interrupt number		Interrupt level		TBR default address
	Decimal	Hexadecimal	Register	Offset	
Reserved for system (used in REALOS*)	64	40	-	2FCH	000FFEFCH
Reserved for system (used in REALOS*)	65	41	-	2F8н	000FFEFF8
Used in INT instructions	$\begin{gathered} 66 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 42 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 F 4 \mathrm{H} \\ \text { to } \\ 000 \mathrm{H} \end{gathered}$	$\begin{aligned} & \text { O00FFEF4н } \\ & \text { to } \\ & 000 \text { FFD00н } \end{aligned}$

*: When using in REALOS/FR, interrupt 0x40, 0×41 for system code.

MB91F109

PERIPHERAL RESOURCES

1. I/O Ports

There are 2 types of I/O port register structure; port data register (PDR0 to PDRF) and data direction register (DDR0 to DDRF), where bits PDR0 to PDRF and bits DDR0 to DDRF corresponds respectively. Each bit on the register corresponds to an external pin. In port registers input/output register of the port configures input/ output function of the port, while corresponding bit (pin) configures input/output function in data direction registers. Bit "0" specifies input and "1" specifies output.

- For input (DDR = "0") setting;

PDR reading operation: reads level of corresponding external pin.
PDR writing operation: writes set value to PDR.

- For output (DDR = "1") setting;

PDR reading operation: reads PDR value.
PDR writing operation: outputs PDR value to corresponding external pin.

(1) Register configuration

- Port data register

Address		Initial value	
000001H	PDR2	XXXXXXXXв	(R/W)
000000H	PDR3	XXXXXXXX	(R/W)
000007H	PDR4	XXXXXXXX	(R/W)
000006н	PDR5	XXXXXXXX	(R/W)
000005 ${ }_{\text {H }}$	PDR6	XXXXXXXXв	(R/W)
000004H	PDR7	- - - Х	(R/W)
00000Bн	PDR8		(R/W)
000009н	PDRA	$-\mathrm{XXXXXXX}$	(R/W)
000008н	PDRB	XXXXXXXX	(R/W)
000012н	PDRE	XXXXXXXX	(R/W)
000013н	PDRF	XXXXXXXX	(R/W)

() : Access

R/W : Readable and writable
Indeterminate

MB91F109

- Data direction register

Address	bit 7	bit 0	Initial value	
000601H	DDR2		00000000 в	(W)
000600н	DDR3		00000000 в	(W)
000607H	DDR4		00000000 в	(W)
000606H	DDR5		00000000 в	(W)
000605 ${ }_{\text {H }}$	DDR6		00000000 в	(W)
000604H	DDR7		- - - 0 в	(W)
00060B ${ }_{\text {H }}$	DDR8		- 000000 в	(W)
000609H	DDRA		- 0000000 в	(W)
000608H	DDRB		00000000 в	(W)
0000D2н	DDRE		00000000 в	(W)
0000D3н	DDRF		00000000 в	(W)

(): Access

W: Write only

- : Unused

(2) Block diagram

MB91F109

2. DMA Controller (DMAC)

The DMA controller is a module embedded in FR family devices, and performs DMA (direct memory access) transfer.
DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to enhanced performance of the system.

- 8 channels
- Mode: single/block transfer, burst transfer and continuous transfer: 3 kinds of transfer
- Transfer all through the area
- Max. 65536 of transfer cycles
- Interrupt function right after the transfer
- Selectable for address transfer increase/decrease by the software
- External transfer request input pin, external transfer request accept output pin, external transfer complete output pin three pins for each

(1) Registers configuration

- DMAC internal registers
- DMAC parameter descriptor pointer

- DMAC control status register

	bit 31	bit 0
Address		
00000204		DACSR

- DMAC pin control register

Initial value
XXXXXXXXB
XXXXXXXXB
$X X X X X X X X B$
$X 0000000$ X0000000в

Initial value
00000000 в 00000000 в 00000000 в 00000000 в

Initial value XXXXXXXX XX000000 в (R/W) XX000000 в XX000000в
(R/W)
(R/W)
(R/W)
() : Access

R/W : Readable and writable
X : Indeterminate

MB91F109

- DMAC descriptor
- The first word of descriptor

- The second word of descriptor

bit 31	bit 0
SADR	

(R/W)

- The third word of descriptor

| bit 31 | bit 0 |
| :--- | :--- | :--- |
| DADR | |

R/W: Readable and writable

MB91F109

(2) Block diagram

MB91F109

3. UART

The UART is a serial I/O port for supporting asynchronous (start-stop system) communication or CLK synchronous communication, and it has the following features.
The MB91F109 consists of 3 channels of UART.

- Full double double buffer
- Both a synchronous (start-stop system) communication and CLK synchronous communication are available.
- Supporting multi-processor mode
- Perfect programmable baud rate

Any baud rate can be set by internal timer (refer to section "4. U-TIMER").

- Any baud rate can be set by external clock.
- Error checking function (parity, framing and overrun)
- Transfer signal: NRZ code
- Enable DMA transfer/start by interrupt.

(1) Register configuration

- Serial control register 0 to 2

Address		bit 8 bit 7 bit 0	Initial value
SCR0:00001Eн	SCR0 to SCR2	(SMR) ${ }^{\text {- }}$ - - -	00000100 в (R/W)
SCR1: 000022н	SCR0 to SCR2	- - - - - -	00000100 в (R/W)
SCR2 : 000026н			

- Serial model register 0 to 2

- Serial status register 0 to 2

Address	bit 15	bit 8 bit 7	bit 0	Initial value
SSR0: 00001Сн				
SSR1:000020н	SSR0 to SSR2	1	'	00001 - 00 в (R/W)
SSR2 : 000024н				

- Serial input data register 0 to 2

SIDR2 : 000025

- Serial output data register 0 to 2

Address	bit 15	bit 8 bit 7 bit 0	Initial value
SODR0 : 00001D	(SSR)		X X X X X X в $^{\text {(}} \mathrm{W}$)
SODR1:000021н		- - - - - - - 」	XXXXXXXX ${ }_{\text {(W) }}$

() : Access

R/W : Readable and writable

- : Unused

X : Indeterminate

(2) Block diagram

MB91F109

4. U-TIMER (16-bit Timer for UART Baud Rate Generation)

The U-TIMER is a 16 -bit timer for generating UART baud rate. Combination of chip operating frequency and reload value of U-TIMER allows flexible setting of baud rate.
The U-TIMER operates as an interval timer by using interrupt issued on counter underflow.
The MB91F109 has 3 channel U-TIMER embedded on the chip. When used as an interval timer, two couple of U-TIMER (ch0, ch1) can be cascaded and an interval of up to $2^{32} \times \phi$ can be counted.
(1) Register configuration

- U-TIMER register ch. 0 to ch. 2

- U-TIMER reload register ch. 0 to ch. 2

- U-TIMER control register ch. 0 to ch. 2

(2) Block diagram

MB91F109

5. PWM Timer

The PWM timer can output high accurate PWM waves efficiently.
MB91F109 has inner 4-channel PWM timers, and has the following features.

- Each channel consists of a 16-bit down counter, a 16 -bit data resister with a buffer for cycle setting, a 16 -bit compare resister with a buffer for duty setting, and a pin controller.
- The count clock of a 16-bit down counter can be selected from the following four inner clocks.

Inner clock $\phi, \phi / 4, \phi / 16, \phi / 64$

- The counter value can be initialized "FFFFh" by the resetting or the counter borrow.
- PWM output (each channel)

MB91F109

(1) Register configuration

- Control status register H0 to 3

- Control status register L0 to 3

Address	bit 15	bit 0	Initial value
PCNLO : 0000E7H		PCNL0 to PCNL3	00000000 в (R/W)
PCNL1: 0000EFH		PCNLO to PCNL3	00000000 в (R/W)
PCNL2 : 0000F7H			
PCNL3 : 0000FFH			

- PWM cycle setting register 0 to 3

Address	bit 15	bit 0	itial value
PCSR0 : 0000E2H	PCSR0 to PCSR3		XXXXXXXX ${ }_{\text {в }}$ (W)
PCSR1: 0000EAн			XXXXXXXX ${ }_{\text {в }}{ }^{(W)}$
PCSR2 : 0000F2н			XXXXXXXX
PCSR3 : 0000FAн			

- PWM duty setting register 0 to 3

PDUT1.0000
PDUT2:0000F4н
PDUT3:0000FС
- PWM timer register 0 to 3

Address		bit 0	Initial value
PTMR0 : 0000E0h	PTMR0 to PTMR3		$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text { b } \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text { в) }\end{array}$
PTMR1: 0000E8н	PTMR0 to PTMR3		11111111 B (R)
PTMR2 : 0000F0н			
PTMR3 : 0000F8н			

- General control register 1, 2

| Address | bit 15 | bit 8 bit 7 | bit 0 |
| ---: | :--- | ---: | :--- |\quad Initial value

() : Access

R/W : Readable and writable
R : Read only
W : Write only

- : Unused

X : Indeterminate

MB91F109

(2) Block diagram

- Block diagram (general construction)

- Block diagram (for one channel)

MB91F109

6. 16-bit Reload Timer

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload timer, a prescaler for generating internal count clock and control registers.
Internal clock can be selected from 3 types of internal clocks (divided by 2/8/32 of machine clock).
The DMA transfer can be started by the interruption.
The MB91F109 consists of 3 channels of the 16 -bit reload timer.

(1) Register configuration

- 16-bit reload timer control status register 0 to 2

Address	bit 15	bit 0	Initial value
TMCSR0 : 00002Eн	TMCSR0 to TMCSR2		- - 0000 в (R/W)
TMCSR1:000036н			00000000 в
TMCSR2 : 000042н			

- 16-bit timer register 0 to 2

- 16-bit reload register 0 to 2

Address	bit 15	bit 0	Initial value
TMRLR0 : 000028н	TMRLR0 to TMRLR2		XXXXXXXX ${ }_{\text {в }}{ }_{\text {(W) }}$
TMRLR1:000030н			XXXXXXXX в $^{(W)}$
TMRLR2:00003C			

() : Access

R/W : Readable and writable
R : Read Only
W : Write Only

- : Unused

X : Indeterminate
(2) Block diagram

MB91F109

7. Bit Search Module

The bit search module detects transitions of data (0 to $1 / 1$ to 0) on the data written on the input registers and returns locations of the transitions.

(1) Register configuration

- Bit search module 0, 1-detection data register

Address	bit 31	bit 0	$\begin{aligned} & \text { Initial value } \\ & X X X X X X \end{aligned}$
BSD0 : 000003F0h	BSD0, BSD1		
BSD1 : 000003F4н			

- Bit search module transition-detection data register

Address	bit 31	bit 0	$\begin{aligned} & \quad \text { Initial value } \\ & X X X X X X \end{aligned}$
000003F8H	BSDC		$\begin{aligned} & x \times x \times x \times \times \times{ }^{x}(W) \\ & \times x \times x \times x \times{ }^{\circ} \end{aligned}$ $X \times \times \times \times \times \times \times \text { в }$
			XXXXXXXX

- Bit search module detection result register

() : Access

R/W : Readable and writable
R : Read only
W : Write only
X : Indeterminate
(2) Block diagram

MB91F109

8. 10-bit A/D Converter (Successive Approximation Conversion Type)

The A/D converter is the module which converts an analog input voltage to a digital value, and it has following features.

- Minimum converting time: $5.6 \mu \mathrm{~s} / \mathrm{ch}$. (system clock: 25 MHz)
- Inner sample and hold circuit
- Resolution: 10 bits
- Analog input can be selected from 4 channels by program.

Single convert mode: 1 channel is selected and converted.
Scan convert mode: Converting continuous channels. Maximum 4 channels are programmable.
Continuous convert mode: Converting the specified channel repeatedly.
Stop convert mode: After converting one channel then stop and wait till next activation synchronizing at the beginning of conversion can be performed.

- DMA transfer operation is available by interruption.
- Operating factor can be selected from the software, the external trigger (falling edge), and 16-bit reload timer (rising edge).
(1) Register configuration
- A/D converter control status register

Address	bit 15	bit 0
$0000003 A_{H}$		

Initial value
$\begin{array}{lllllll}0 & 0 & 0 & 00000 \text { в } \\ 0 & 0 & 0 & 0 & 0000\end{array}$ (R/W)

- A/D converter data register

() : Access

R/W : Readable and writable
R : Read only
X : Indeterminate

MB91F109

(2) Block diagram

MB91F109

9. Interrupt Controller

The interrupt controller processes interrupt acknowledgments and arbitration between interrupts.

- Hardware Configuration

Interrupt controller is configured by ICR resistor, interrupt priority decision circuit, interrupt level, vector generation and HLDREQ cancel request, and has the following functions.

- Main Functions

NMI request/Interrupt request detection
Priority (judgement) decision (via level and vector)
Transfer of judged interrupt level to CPU
Transfer of judged interrupt vector to CPU
Return instruction from the stop mode via NMI/interrupt
Generation of HOLD request cancel request to the bus timer

MB91F109

(1) Register configuration

- Interrupt control register 0 to 31, 47

Address		Initial value	Address	bit 7	Initial value
00000400н	ICROO	- - 11111 в (R/W)	00000411H	ICR17	-- 11111 в (R/W)
00000401H	ICR01	- - 11111 в (R/W)	00000412н	ICR18	-- 11111 в (R/W)
00000402н	ICR02	- - 11111 в (R/W)	00000413H	ICR19	-- 11111 в (R/W)
00000403H	ICR03	-- 11111 в (R/W)	00000414H	ICR20	-- 11111 в (R/W)
00000404H	ICR04	-- 11111 в (R/W)	00000415 ${ }_{\text {H }}$	ICR21	-- 11111 в (R/W)
00000405 ${ }_{\text {H }}$	ICR05	-- 11111 в (R/W)	00000416H	ICR22	-- 11111 в (R/W)
00000406н	ICR06	-- 11111 в (R/W)	00000417 ${ }^{\text {H }}$	ICR23	-- 11111 в (R/W)
00000407H	ICR07	- - 11111 в (R/W)	00000418H	ICR24	-- 11111 в (R/W)
00000408H	ICR08	-- 11111 в (R/W)	00000419н	ICR25	-- 11111 в (R/W)
00000409н	ICR09	-- 11111 в (R/W)	0000041 Ан	ICR26	-- 11111 в (R/W)
0000040Ан	ICR10	-- 11111 в (R/W)	0000041 В ${ }_{\text {н }}$	ICR27	-- 11111 в (R/W)
0000040В ${ }_{\text {н }}$	ICR11	-- 11111 в (R/W)	$0000041 \mathrm{CH}_{\text {H }}$	ICR28	-- 11111 в (R/W)
0000040CH	ICR12	- - 11111 в (R/W)	0000041 D	ICR29	-- 11111 в (R/W)
0000040碞	ICR13	-- 11111 в (R/W)	0000041 Ен	ICR30	-- 11111 в (R/W)
0000040Ен	ICR14	-- 11111 в (R/W)	0000041Fн	ICR31	-- 11111 в (R/W)
0000040FH	ICR15	-- 11111 в (R/W)	0000042F ${ }_{\text {H }}$	ICR47	-- 11111 в (R/W)
00000410н	ICR16	-- 11111 в (R/W)			

- Hold request cancel request level setting register

[^0]
MB91F109

(2) Block diagram

*1: DLYI stands for delayed interrupt module (delayed interrupt generation block) (refer to the section "11. Delayed Interrupt Module" for detail).
*2: INTO is a wake-up signal to clock control block in the sleep or stop status.
*3: HLDCAN is a bus release request signal for bus masters other than CPU.
*4: LEVEL4 to LEVELO are interrupt level outputs.
*5: VCT5 to VCT0 are interrupt vector outputs.

MB91F109

10. External Interrupt/NMI Control Block

The external interrupt/NMI control block controls external interrupt request signals input to $\overline{\text { NMI }}$ pin and INTO to INT3 pins.
Detecting levels can be selected from "H", "L", rising edge and falling edge (not for $\overline{N M I} p i n$).

(1) Register configuration

- Interrupt enable register

- External interrupt cause register

- External interrupt request level setting register

| Address | bit 15 | bit 0 | Initial value |
| :---: | :---: | :---: | :---: | :---: |
| 00000099_{H} | | ELVR | $00000000 \mathrm{~B}(\mathrm{R} / \mathrm{W})$ |

() : Access

R/W : Readable and writable

(2) Block diagram

MB91F109

11. Delayed Interrupt Module

Delayed interrupt module is a module which generates a interrupt for changing a task. By using this delayed interrupt module, an interrupt request to CPU can be generated/cancelled by the software.
Refer to the section " 9 . Interrupt Controller" for delayed interrupt module block diagram.

- Register configuration

- Delayed interrupt control register

() : Access

R/W : Readable and writable

- : Unused

MB91F109

12. Clock Generation (Low-power consumption mechanism)

The clock control block is a module which undertakes the following functions.

- CPU clock generation (including gear function)
- Peripheral clock generation (including gear function)
- Reset generation and cause hold
- Standby function
- DMA request prohibit
- PLL (multiplier circuit) embedded

(1) Register configuration

- Reset cause register/watchdog cycle control register

Address	bit 10 bit 9 bit 8		bit 0	Initial value
00000480H	RSRR	WTCR		1 XXXX - 000 в (R/W)

- Standby control register

- DMA controller request squelch register

Initial value
… 0000 в (R/W)

- Timebase timer clear register

Initial value
$X X X X X X X$ в (W)

- Gear control register

- Watchdog reset occurrence postpone register

| Address | bit 15 | bit 7 | bit 0 |
| ---: | :--- | ---: | :--- |\quad Initial value

- PLL control register

| () | $:$ Access |
| :---: | :--- | :--- |
| R/W | $:$ Readable and writable |
| R | $:$ Read Only |
| W | $:$ Write Only |
| $\overline{\mathrm{X}}$ | $:$ Unused |
| X | $:$ Indeterminate |

(2) Block diagram

MB91F109

13. External Bus Interface

The external bus interface controls the interface between the device and the external memory and also the external I/O, and has the following features.

- 25-bit (32 Mbytes) address output
- 6 independent banks owing to the chip select function.

Can be set to anywhere on the logical address space for minimum unit 64 Kbytes.
Total 32 Mbytes $\times 6$ area setting is available by the address pin and the chip select pin.

- 8/16-bit bus width setting are available for every chip select area.
- Programmable automatic memory wait (max. for 7 cycles) can be inserted.
- DRAM interface support

Three kinds of DRAM interface: Double CAS DRAM (normally DRAM I/F)
Single CAS DRAM
Hyper DRAM
2 banks independent control (RAS, CAS, etc. control signals)
DRAM select is available from 2CAS/1WE and 1CAS/2WE.
Hi -speed page mode supported
CBR/self refresh supported
Programmable wave form

- Unused address/data pin can be used for I/O port.
- Little endian mode supported
- Without Clock doubler: Internal bus 25 MHz , external bus 25 MHz (at source oscillation 12.5 MHz)

MB91F109

(1) Register configuration

- Area select register 1 to 5

- Area mask register 1 to 5

AMR3: 00000616н
AMR4 : 0000061Aн
AMR5 : 0000061Eヶ

- Area mode register 0, 1, 32, 4, 5

Address AMD0 : 0000062OH AMD1: 00000621H	bit 8 bit 7		bit 0
	AMD0	AMD1	
AMD32 : 00000622н AMD4:00000623н	AMD32	AMD4	
AMD5 : 00000624	AMD5	(DSCR)	

- DRAM single control register

- Refresh control register

- External pin control register 0, 1

Address		bit 0
EPCRO: 00000628H	EPCRO	
EPCR1: 0000062Aн	EPCR1	

- DRAM control register 4, 5

Address	bit 15	bit 0
DMCR4: $0000062 C_{H}$		
DMCR5: $0000062 \mathrm{E}_{\mathrm{H}}$		DMCR4, DMCR5

- Litter endian register

- Mode register

Initial value
00000000 в
00000001 в
00000000 в
00000010 в
00000000 в
00000011 в (W)
00000000 в
00000100 в
00000000 в
00000101 в

Initial value
00000000 в (W)
00000000 в

Initial value

$$
\begin{aligned}
& \begin{array}{cccccc}
\text { - } & -0011 \\
0- & 0 & 0 & 0 & 0 & 0 \text { в }
\end{array} \text { (R/W) } \\
& 00000000 \text { в } \\
& \text { 0-00000 в }(R / W) \\
& \text { 0--00000в (R/W) }
\end{aligned}
$$

```
Initial value 00000000 в (W)
```

\quad Initial value
$\cdots-\times X X X X X_{\mathrm{B}}$
$00-\cdots-000_{\mathrm{B}}(\mathrm{R} / \mathrm{W})$

Initial value
$\begin{array}{ccccccc}- & -1 & 1 & 0 & \text { в } \\ -1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ в (W)
$\begin{array}{ccccccc} \\ -1 & - & - & - & -1 & \text { в } \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$ в

Initial value

Initial value
$\ldots 00$ в (W)

Initial value
$X X X X X X X$ в (W)
() : Access

R/W : Readable and writable
W : Write only

- : Unused

X : Indeterminate

MB91F109

(2) Block diagram

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{V} \mathrm{ss}=\mathrm{AV}_{\mathrm{ss}}=0.0 \mathrm{~V}\right.$					
Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	Vss-0.3	Vss +4.0	V	*1
Analog supply voltage	AV ${ }_{\text {cc }}$	Vss-0.3	Vss +4.0	V	*2
Analog reference voltage	AVRH	Vss-0.3	Vss +4.0	V	*2
Analog pin input voltage	VIA	Vss-0.3	$\mathrm{AV} \mathrm{cc}+0.3$	V	
Input voltage	V	Vss-0.3	$\mathrm{V} c \mathrm{c}+0.3$	V	
Output voltage	Vo	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current	loL	-	10	mA	*3
"L" level average output current	lolav	-	8	mA	* 4
"L" level maximum total output current	Elo	-	100	mA	
"L" level average total output current	Elolav	-	50	mA	*5
"H" level maximum output current	Іон	-	-10	mA	*3
" H " level average output current	lohav	-	-4	mA	*4
"H" level maximum total output current	Гloн	-	-50	mA	
"H" level average total output current	Гlohav	-	-20	mA	*5
Power consumption	Pd	-	500	mW	
Operating temperature	TA	0	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Vcc must not be less than $\mathrm{V} s \mathrm{-}-0.3 \mathrm{~V}$.
*2: Make sure that the voltage does not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$, such as when turning on the device.
*3: Maximum output current is a peak current value measured at a corresponding pin.
*4: Average output current is an average current for a 100 ms period at a corresponding pin.
*5: Average total output current is an average current for a 100 ms period for all corresponding pins.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91F109

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	3.15	3.6	V	Normal operation
	Vcc	3.15	3.6	V	Retaining the RAM state in stop mode
Analog supply voltage	AV ${ }_{\text {cc }}$	Vss - 0.3	Vss +3.6	V	
Analog reference voltage	AVRH	AVss	AVcc	V	
Operating temperature	$\mathrm{T}_{\text {A }}$	0	+70	${ }^{\circ} \mathrm{C}$	

- Normal operation warranty rage

- External/Internal clock setting rage

Notes: - When using PLL, the external clock must be used need 12.5 MHz.

- PLL oscillation stabilizing period $>100 \mu \mathrm{~s}$
- The setting of internal clock must be within above ranges.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91F109

3. DC Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	Input pin except for hysteresis input	-	$\underbrace{0.65 \times}_{V_{c c}}$	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
	V ${ }_{\text {HS }}$	$\overline{\mathrm{NM}}, \overline{\mathrm{RST}}$, P40 to P47, P50 to P57, P60 to P67, P70, P81, P83 to P85, PA0 to PA6, PB0 to PB7, PE0 to PE7, PF0 to PF7	-	$0.8 \times \mathrm{Vcc}$	-	V cc +0.3	V	Hysteresis input
"L" level input voltage	VIL	Input other than following symbols	-	Vss -0.3	-	$0.25 \times \mathrm{Vcc}$	V	
	VıLs	NMI, RST, P40 to P47, P50 to P57, P60 to P67, P70, P81, P83 to P85, PA0 to PA6, PB0 to PB7, PE0 to PE7, PF0 to PF7	-	Vss - 0.3	-	$0.2 \times \mathrm{Vcc}$	V	Hysteresis input
"H" level output voltage	Vor	$\begin{aligned} & \text { P20 to P27 } \\ & \text { P30 to P37 } \\ & \text { P40 to P47 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.15 \mathrm{~V} \\ & \mathrm{l} \mathrm{OH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.5$	-	-	V	
"L" level output voltage	Vol	$\begin{aligned} & \text { P50 to P57 } \\ & \text { P60 to P67 } \\ & \text { P70 } \\ & \text { P80 to P85 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.15 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	ILI	PA0 to PA6 PB0 to PB7 PE0 to PE7 PF0 to PF7	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & 0.45 \mathrm{~V}<\mathrm{V}_{1} \\ & <\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	+5	$\mu \mathrm{A}$	
Pull-up resistance	Rpulı	RST	$\begin{aligned} & V_{c c}=3.6 \mathrm{~V} \\ & V_{\mathrm{I}}=0.45 \mathrm{~V} \end{aligned}$	25	50	100	$\mathrm{k} \Omega$	
Power supply current	Icc	V cc	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=12.5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \end{aligned}$	-	75	100	mA	(2 multiplication) Operation at 25 MHz
	Iccs	V cc	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=12.5 \mathrm{MHz} \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$	-	35	50	mA	Sleep mode
	Icch	Voc	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \end{aligned}$	-	1.4	150	$\mu \mathrm{A}$	Stop mode
Input capacitance	Cin	Except for Vcc, $\mathrm{AVcc}, \mathrm{AV}$ ss, Vss	-	-	10	-	pF	

MB91F109

4. FLASH Memory Programming/Erasing Characteristics

Parameter	Condition	$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AV}^{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$				
		Value			Unit	Remarks
		Min.	Typ.	Max.		
Sector erasing time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V} \mathrm{Cc}=3.3 \mathrm{~V} \end{aligned}$	-	1.5	13.5	s	Except for the write time before internal erase operation
Chip erasing time		-	-	27.0	s	Except for the write time before internal erase operation
Byte programming time		-	16	-	$\mu \mathrm{s}$	Except for the over head time of the system
Chip programming time		-	2.1	-	s	Except for the over head time of the system
Erase/Program cycle	-	100	-	-	cycle	

Note: The internal automatic algorithm continues operations for up to 48 ms , for each 1-byte writing operation.

MB91F109

5. AC Characteristics

(1) Measurement Conditions

*: Input rise/fall time is 10 ns . and less.

(2) Clock Timing Rating

$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	Self-oscillation at 12.5 MHz Internal operation at 25 MHz (Via PLL, double)	12.5	12.5	MHz	
	Fc	X0, X1	Self-oscillation (divide-by-2 input)	10	25	MHz	
	Fc	X0, X1	External clock (divide-by-2 input)	10	25	MHz	
Clock cycle time	tc	X0, X1	Self-oscillation at 12.5 MHz Internal operation at 25 MHz (Via PLL, double)	-	80	ns	
	tc	X0, X1	-	40	100	ns	
Frequency shift ratio (when locked)	Δf	-	Self-oscillation at 12.5 MHz Internal operation at 25 MHz (Via PLL, double)	-	5	\%	*1
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wh}}, \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	$\mathrm{X} 0, \mathrm{X} 1$	$\begin{aligned} & \text { 12.5 MHz to } \\ & 25.0 \mathrm{MHz} \end{aligned}$	18.5	-	ns	Input clock pulse to X0 and X1
	Pwh	X0	12.5 MHz and less	25	-	ns	Input clock pulse to X0 only
Input clock rising/falling time	tcr, tcf	X0, X1	-	-	8	ns	($\mathrm{tcR}+\mathrm{tcF}$)
Internal operating clock frequency	fCP	-	CPU system	0.625*2	25	MHz	
	fcpp	-	Peripheral system	0.625*2	25	MHz	
Internal operating clock cycle time	tcp	-	CPU system	40	1600*2	ns	
	tcpp	-	Peripheral system	40	1600 *2	ns	

*1: Frequency shift ratio stands for deviation ratio of the operating clock from the center frequency in the clock multiplication system.
$\Delta f=\frac{|\alpha|}{f_{0}} \times 100(\%) \quad$ Center frequency
*2: These values are for a minimum clock of 10 MHz input to XO , a divide-by-2 system of the source oscillation and a $1 / 8$ gear.

MB91F109

- Load conditions

Output pin

- Clock timing rating measurement conditions

(3) Clock Output Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time	torc	CLK	-	tcp*1	-	ns	*2
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK		$1 / 2 \times$ toyc -5	$1 / 2 \times$ tcyc +5	ns	*3
CLK $\downarrow \rightarrow$ CLK \uparrow	tclch	CLK		$1 / 2 \times$ toyc -5	$1 / 2 \times$ tcyc +5	ns	*4

*1: For information on tcp (internal operating clock cycle time), see "(2) Clock Timing Rating."
*2: tcyc is a frequency for 1 clock cycle including a gear cycle.
*3: Rating at a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute " n " in the following equations with $1 / 2,1 / 4,1 / 8$, respectively.

Min. : $(1-\mathrm{n} / 2) \times$ tcyc -10
Max. : $(1-n / 2) \times$ tcyc +10
*4: Rating at a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute " n " in the following equations with $1 / 2,1 / 4,1 / 8$, respectively.

Min. : $\mathrm{n} / 2 \times \mathrm{tcyc}-10$
Max. : $\mathrm{n} / 2 \times \mathrm{tcyc}+10$

MB91F109

The relation between source oscillation input and CLK pin for configured by CHC/CCK1/CCK0 settings of GCR (gear control register) is as follows:
However, in this chart source oscillation input means X0 input clock.

- Ceramic oscillator applications

*: Murata Mfg. Co., Ltd.

- Discreet type

Oscillation frequency [MHz]	Model	Load capacitance $\mathbf{C}_{1}=\mathbf{C}_{2}[\mathrm{pF}]$	Power supply voltage Vcc [V]
5.00 to 6.30	CSA $\square \square \square \mathrm{MG}$	30	3.15 to 3.6
	CST $\square \square$ MGW	(30)	
	CSA $\square \square \square$ MG093	30	3.15 to 3.6
	CST $\square \square \square$ MGW093	(30)	
6.31 to 10.0	CSA $\square \square \square \mathrm{MTZ}$	30	3.15 to 3.6
	CST $\square \square \square \mathrm{MTW}$	(30)	
	CSA $\square \square \square$ MTZ093	30	3.15 to 3.6
	CST $\square \square \square$ MTW093	(30)	
10.1 to 13.0	CSA $\square \square \square$ MTZ	30	3.15 to 3.6
	CST $\square \square \square$ MTW	(30)	
	CSA $\square \square$ MTZ093	30	3.15 to 3.6
	CST $\square \square \square$ MTW093	(30)	
13.01 to 15.00	CSA $\square \square \square \square \mathrm{MXZ040}$	15	3.2 to 3.6
	CST $\square \square \square \mathrm{MXW0C3}$	(15)	

(): C_{1} and C_{2} internally connected 3 contacts type.

MB91F109

(4) Reset Input Ratings

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trsti	$\overline{\mathrm{RST}}$	-	tcp** $\times 5$	-	ns	

*: For information on tcp (internal operating clock cycle time), see "(2) Clock Timing Rating."

(5) Power on Supply Specifications (Power-on Reset)

$$
\left(\mathrm{AV} \mathrm{ccc}=\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	tr	Vcc	$\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}$	-	18	ms	$\mathrm{V}_{\mathrm{cc}}<0.2 \mathrm{~V}$ before the power supply rising
Power supply shut off time	toff	V cc	-	1	-	ms	Repeated operations
Oscillation stabilizing time	tosc	-		$\begin{gathered} 2 \times \mathrm{tc}^{*} \times 2^{20} \\ +100 \mu \mathrm{~s} \end{gathered}$	-	ns	

*: For information on tc (clock cycle time), see "(2) Clock Timing Rating."

Note: Sudden change in supply voltage during operation may initiate a power-on sequence.
To change supply voltage during operation, it is recommended to smoothly raise the voltage to avoid rapid fluctuations in the supply voltage.

Vcc

$V_{\text {ss }}$ \qquad

$t_{\text {RSTL: }}$ Reset input time

Notes: - Set $\overline{R S T}$ pin to " L " level when turning on the device, at least the described above duration after the supply voltage reaches Vcc is necessary before turning the $\overline{\mathrm{RST}}$ to "H" level.

- Some internal resistors which are initialized only via power on reset are embedded in the device. To initialize these resistors, run power on reset by returning on the power supply.

MB91F109

(6) Normal Bus Access Read/write Operation

$$
\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V}_{\mathrm{cc}}=3.15 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS5}}$ delay time	tchcsl	$\frac{\mathrm{CLK},}{\mathrm{CSO}} \text { to } \overline{\mathrm{CS5}}$	-	-	15	ns	
	tchcsh	$\frac{\text { CLK, }}{\text { CS0 to } \overline{C S 5}}$		-	15	ns	
Address delay time	tchav	$\begin{aligned} & \text { CLK, } \\ & \text { A24 to A00 } \end{aligned}$		-	15	ns	
Data delay time	tchov	$\begin{aligned} & \text { CLK, } \\ & \text { D31 to D16 } \end{aligned}$		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tcLRL	CLK, $\overline{\mathrm{RD}}$		-	15	ns	
	ttler	CLK, $\overline{\mathrm{RD}}$		-	15	ns	
$\overline{\text { WRO, }}$ WR1 delay time	tclw	$\frac{\text { CLK, }}{\text { WR0, }} \overline{\text { WR1 }}$		-	15	ns	
	tclwh	$\frac{\text { CLK, }}{\text { WR0, }} \overline{\text { WR1 }}$		-	15	ns	
Valid address \rightarrow valid data input time	tavov	$\begin{aligned} & \text { A24 to A00, } \\ & \text { D31 to D16 } \end{aligned}$		-	$\begin{gathered} 3 / 2 \times \mathrm{tcrc}^{* 1} \\ -25 \end{gathered}$	ns	$\begin{aligned} & * 2 \\ & * 3 \\ & \hline \end{aligned}$
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input time	trlov	$\begin{aligned} & \overline{\mathrm{RD},} \\ & \mathrm{D} 31 \text { to D16 } \end{aligned}$		-	tcrc* ${ }^{\text {- }} 10$	ns	*2
Data set up $\rightarrow \overline{\mathrm{RD}} \uparrow$ time	tosRH	$\overline{\mathrm{RD}}$, D31 to D16		10	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox	$\overline{\mathrm{RD}}$, D31 to D16		10	-	ns	

*1: For information on tcyc (a cycle time of peripheral system clock), see "(3) Clock Output Timing."
*2: When bus timing is delayed by automatic wait insertion or RDY input, add (tcyc \times extended cycle number for delay) to this rating.
*3: Rating at a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute " n " in the following equation with $1 / 2,1 / 4,1 / 8$, respectively.

Equation: $(2-n / 2) \times \operatorname{tcrc}-25$

MB91F109

(7) Ready Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY set up time \rightarrow CLK \downarrow	trovs	RDY, CLK	-	15	-	ns	
CLK $\downarrow \rightarrow$ RDY hold time	troy	CLK, RDY		0	-	ns	

(8) Hold Timing

$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\overline{\text { BGRNT }}$ delay time	tchbgl	$\begin{aligned} & \hline \frac{\text { CLK, }}{\text { BGRNT }} \end{aligned}$	-	-	6	ns	
	tchbar	$\frac{\text { CLK, }}{\text { BGRNT }}$		-	6	ns	
Pin floating $\rightarrow \overline{\text { BGRNT }} \downarrow$ time	txhaL	BGRNT		tcyc* - 10	tcrc* +10	ns	
$\overline{\text { BGRNT }} \uparrow \rightarrow$ pin valid time	thatv	$\overline{\text { BGRNT }}$		tcrc* -10	tcrc* +10	ns	

*: For information on tcrc (a cycle time of peripheral system clock), see "(3) Clock Output Timing." Note: There is a delay time of more than 1 cycle from BRQ input to $\overline{\text { BGRNT }}$ change.

MB91F109

(9) Normal DRAM Mode Read/Write Cycle

$\left(\mathrm{V}\right.$ cc $=3.15 \mathrm{~V}$ to 3.6 V, $\mathrm{V}_{\text {ss }}=\mathrm{AV}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclrah	CLK, RAS	-	-	15	ns	
	tchral	CLK, RAS		-	15	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CSOL, } \\ & \text { CS1L } \end{aligned}$		-	15	ns	
	tclcash	CLK, CSOH, CS1H, CSOL, CS1L		-	15	ns	
ROW address delay time	tchrav	$\begin{aligned} & \text { CLK, } \\ & \text { A24 to A00 } \end{aligned}$		-	15	ns	
COLUMN address delay time	tchcav	CLK, A24 to A00		-	15	ns	
DW delay time	tchow	CLK, $\overline{\text { WW }}^{* 2}$		-	15	ns	
DW delay time	tchown	CLK, $\overline{\text { WW }}^{* 2}$		-	15	ns	
Output data delay time	tchov 1	CLK, D31 to D16		-	15	ns	
RAS $\downarrow \rightarrow$ valid data input time	trlov	RAS, D31 to D16		-	$\begin{gathered} \hline 5 / 2 \times \text { tcrcc* }^{* 1} \\ -16 \end{gathered}$	ns	$\begin{array}{\|l} * 3 \\ * 4 \\ * \end{array}$
CAS $\downarrow \rightarrow$ valid data input time	tclov	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CSOL, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		-	$\mathrm{tcrc}^{* 1}-17$	ns	*3
CAS $\uparrow \rightarrow$ data hold time	tcadh	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CSOL, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		10	-	ns	

*1: For information on tcyc (a cycle time of peripheral system clock), see "(3) Clock Output Timing."
*2: $\overline{\mathrm{DW}}$ expresses that $\overline{\mathrm{DWO}}, \overline{\mathrm{DW} 1}$ and $\mathrm{CSOH}, \mathrm{CS} 1 \mathrm{H}$ are used for $\overline{\mathrm{WE}}$.
*3: When Q1 cycle or Q4 cycle is extended for 1 cycle, add toyc time to this rating.
*4: Rating at a gear cycle of $\times 1$.
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute " n " in the following equation with $1 / 2,1 / 4,1 / 8$, respectively.

Equation: $(3-n / 2) \times \operatorname{tcyc}-16$

MB91F109

(10) Normal DRAM Mode Fast Page Read/Write Cycle

$\left(\mathrm{Vcc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclrah	CLK, RAS	-	-	15	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CSOL, } \\ & \text { CS1L } \end{aligned}$		-	15	ns	
	tclcash	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CSOL, } \\ & \text { CS1L } \end{aligned}$		-	15	ns	
COLUMN address delay time	tchcav	$\begin{aligned} & \text { CLK, } \\ & \text { A24 to A00 } \end{aligned}$		-	15	ns	
$\overline{\text { DW }}$ delay time	tchown	CLK, $\overline{\text { DW }}$ *		-	15	ns	
Output data delay time	tchov1	CLK, D31 to D16		-	15	ns	
CAS $\downarrow \rightarrow$ valid data input time	tclov	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CSOL, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		-	tcyc* ${ }^{* 1} 17$	ns	*3
CAS $\uparrow \rightarrow$ data hold time	tcadh	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CSOL, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		10	-	ns	

*1: For information on tcyc (a cycle time of peripheral system clock), see "(3) Clock Output Timing."
*2: $\overline{\mathrm{DW}}$ expresses that $\overline{\mathrm{DW} 0}, \overline{\mathrm{DW} 1}$ and $\mathrm{CSOH}, \mathrm{CS} 1 \mathrm{H}$ are used for $\overline{\mathrm{WE}}$.
*3: When Q4 cycle is extended for 1 cycle, add toyc time to this rating.

MB91F109

(11) Single DRAM Timing

$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AVss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tcleah2	CLK, RAS	-	-	15	ns	
	tchral2	CLK, RAS			15	ns	
CAS delay time	tchCAsL2	CLK, CSOH, CS1H, CSOL, CS1L		-	$\mathrm{n} / 2 \times \mathrm{tcrc}^{* 1}$	ns	
	tchCASH2	CLK, CSOH, CS1H, CSOL, CS1L		-	15	ns	
ROW address delay time	tchrav2	CLK, A24 to A00		-	15	ns	
COLUMN address delay time	tchcav2	$\begin{aligned} & \text { CLK, } \\ & \text { A24 to A00 } \end{aligned}$		-	15	ns	
	tchowl2	CLK, $\overline{\mathrm{DW}}{ }^{* 2}$		-	15	ns	
DW delay time	tchowh2	CLK, $\overline{\text { DW }}^{* 2}$		-	15	ns	
Output data delay time	tchov2	CLK, D31 to D16		-	15	ns	
CAS $\downarrow \rightarrow$ Valid data input time	tclov2	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CS0L, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		-	$\begin{aligned} & (1-\mathrm{n} / 2) \times \\ & \text { tcrc }^{\star 1}-17 \end{aligned}$	ns	
CAS $\uparrow \rightarrow$ data hold time	tcADH2	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CS0L, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		10	-	ns	

*1: For information on tcyc (a cycle time of peripheral system clock), see "(3) Clock Output Timing."
*2: $\overline{\mathrm{DW}}$ expresses that $\overline{\mathrm{DW} 0}, \overline{\mathrm{DW} 1}$ and CS0H, CS1H are used for $\overline{\mathrm{WE}}$.

MB91F109

(12) Hyper DRAM Timing

$\left(\mathrm{Vcc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AV}^{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclaah3	CLK, RAS	-	-	15	ns	
	tchralz	CLK, RAS		-	15	ns	
CAS delay time	tcheasl3	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CSOL, } \\ & \text { CS1L } \end{aligned}$		-	$\mathrm{n} / 2 \times \mathrm{tcvc}^{* 1}$	ns	
	tchCAsh3	CLK, CSOH, CS1H, CSOL, CS1L		-	15	ns	
ROW address delay time	tchrav3	CLK, A24 to A00		-	15	ns	
COLUMN address delay time	tchcav3	$\begin{aligned} & \text { CLK, } \\ & \text { A24 to A00 } \end{aligned}$		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tchriz	CLK, $\overline{\text { RD }}$		-	15	ns	
	tснгнз	CLK, $\overline{\mathrm{RD}}$		-	15	ns	
	tclRL3	CLK, $\overline{\mathrm{RD}}$		-	15	ns	
$\overline{\text { DW }}$ delay time	tchowls	CLK, $\overline{\text { WW }}^{* 2}$		-	15	ns	
	tсноWнз	CLK, $\overline{\text { WW }}^{* 2}$		-	15	ns	
Output data delay time	tchov3	CLK, D31 to D16		-	15	ns	
CAS $\downarrow \rightarrow$ valid data input time	tclov3	$\begin{aligned} & \text { CSOH, CS1H, } \\ & \text { CSOL, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		-	tcyc - 17	ns	
CAS $\downarrow \rightarrow$ data hold time	tcADH3	$\begin{aligned} & \text { CS0H, CS1H, } \\ & \text { CS0L, CS1L, } \\ & \text { D31 to D16 } \end{aligned}$		10	-	ns	

*1: For information on tcyc (a cycle time of peripheral system clock), see "(3) Clock Output Timing."
*2: $\overline{\mathrm{DW}}$ expresses that $\overline{\mathrm{DW} 0}, \overline{\mathrm{DW} 1}$ and CSOH, CS1H are used for $\overline{\mathrm{WE}}$.

*1: Q4S indicates Q4SR (Read) of Single DRAM cycle or Q4SW (Write) cycle.
*2: indicates the timing when the bus cycle begins from the high speed page mode.

MB91F109

(13) CBR Refresh

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclrah	CLK, RAS	-	-	15	ns	
	tchral	CLK, RAS		-	15	ns	
CAS delay time	tclcasl	CLK, CSOH, CS1H, CSOL, CS1L		-	15	ns	
	tclcash	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CS0L, } \\ & \text { CS1L } \end{aligned}$		-	15	ns	

MB91F109

(14) Self Refresh

$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclrah	CLK, RAS	-	-	15	ns	
	tchral	CLK, RAS		-	15	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CSOL, } \\ & \text { CS1L } \end{aligned}$		-	15	ns	
	tclcash	$\begin{aligned} & \text { CLK, CSOH, } \\ & \text { CS1H, CSOL, } \\ & \text { CS1L } \end{aligned}$		-	15	ns	

MB91F109

(15) UART Timing

$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, V ss $=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	Internal shift clock mode	$8 \times$ tcycp*	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tstov	-		-80	80	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		100	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tsH1X	-		60	-	ns	
Serial clock "H" pulse width	tsHsL	-	External shift clock mode	$4 \times$ tcycp*	-	ns	
Serial clock "L" pulse width	tsısh	-		$4 \times$ tcycp*	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tstov	-		-	150	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		60	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	

*: For information on tcycp (a cycle time of peripheral system clock), see "(2) Clock Timing Rating."
Notes: This rating is for AC characteristics in CLK synchronous mode.

- Internal shift clock mode

- External shift clock mode

MB91F109

(16) Trigger System Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
A/D start trigger input time	tatgx	$\overline{\text { ATG }}$	-	$5 \times$ tcycp*	-	ns	

*: For information on tcycp (a cycle time of peripheral system clock), see "(2) Clock Timing Rating."

MB91F109

(17) DMA Controller Timing

$\left(\mathrm{V} \mathrm{cc}=3.15 \mathrm{~V}\right.$ to 3.6 V, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
DREQ input pulse width	torwh	DREQ0 to DREQ2	-	$2 \times$ tcrc*	-	ns	
DACK delay time (Normal bus) (Normal DRAM)	tclol	CLK, DACK0 to DACK2		-	6	ns	
	tcıor	CLK, DACK0 to DACK2		-	6	ns	
EOP delay time (Normal bus) (Normal DRAM)	tclel	CLK, EOP0 to EOP2		-	6	ns	
	tcler	CLK, EOP0 to EOP2		-	6	ns	
DACK delay time (Single DRAM) (Hyper DRAM)	tсноL	CLK, DACK0 to DACK2		-	$\mathrm{n} / 2 \times$ tcyc*	ns	
	tснон	CLK, DACK0 to DACK2		-	6	ns	
EOP delay time (Single DRAM) (Hyper DRAM)	tchel	CLK, EOP0 to EOP2		-	$\mathrm{n} / 2 \times$ tcrc*	ns	
	tснен	CLK, EOP0 to EOP2		-	6	ns	

*: For information on tcyc (a cycle time of peripheral system clock), see "(3) Clock Output Timing."

MB91F109

6. A/D Converter Block Electrical Characteristics

$$
\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=3.15 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{AVRH}=3.15 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	bit
Total error	-	-	-	-	± 3.0	LSB
Linearity error	-	-	-	-	± 2.5	LSB
Differentiation linearity error	-	-	-	-	± 1.9	LSB
Zero transition voltage	Vot	ANO to AN3	-1.5LSB	+0.5LSB	+2.5LSB	mV
Full-scale transition voltage	$V_{\text {fst }}$	AN0 to AN3	$\begin{gathered} \text { AVRH - } \\ 4.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \hline \text { AVRH - } \\ 1.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \text { AVRH + } \\ 0.5 L S B \end{gathered}$	mV
Conversion time	-	-	5.19 *1	-	-	$\mu \mathrm{s}$
Analog port input current	Iain	AN0 to AN3	-	0.1	10	$\mu \mathrm{A}$
Analog input voltage	Vain	AN0 to AN3	AVss	-	AVRH	V
Reference voltage	-	AVRH	AVss	-	AVcc	V
Power supply current	IA	AV ${ }_{\text {cc }}$	-	4	-	mA
	ІАн	AV ${ }_{\text {cc }}$	-	-	5 *2	$\mu \mathrm{A}$
Reference voltage supply current	IR	AVRH	-	110	-	$\mu \mathrm{A}$
	IRH	AVRH	-	-	5 *2	$\mu \mathrm{A}$
Conversion variance between channels	-	ANO to AN3	-	-	4	LSB

*1: $\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=3.15 \mathrm{~V}$ to 3.6 V , machine clock 25 MHz
*2: Current value for A/D converters not in operation, CPU stop mode ($\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.6 \mathrm{~V}$)

MB91F109

7. A / D Converter Glossary

- Resolution

The smallest change in analog voltage detected by A/D converter.

- Linearity error

A deviation of actual conversion characteristic from a line connecting the zero-traction point (between "000000 0000 " \leftrightarrow " 0000000001 ") to the full-scale transition point (between "11 1111 1110" \leftrightarrow " 111111 1111").

- Differential linearity error

A deviation of a step voltage for changing the LSB of output code from ideal input voltage.

- Total error

A difference between actual value and theoretical value. The overall error includes zero-transition error, fullscale transition error and linearity error.

Total error of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}}$ [LSB]

Vот \quad (ideal value) $=\mathrm{AVRL}+0.5 \mathrm{LSB}[\mathrm{V}]$
$\mathrm{V}_{\text {FST }} \quad$ (ideal value) $=\mathrm{AVRL}-1.5 \mathrm{LSB}[\mathrm{V}]$
V_{NT} : A voltage for causing transition of digital output from $(\mathrm{N}-1)$ to N
(Continued)

MB91F109

(Continued)
AFF

MB91F109

8. Notes on Using A/D Converter

Output impedance of external circuit of analog input under following conditions;
Output impedance of external circuit < $7 \mathrm{k} \Omega$.
If output impedance of external circuit is too high, analog voltage sampling time may be too short for accurate sampling (sampling time is 5.6μ s for a machine clock of 25 MHz).

- Analog input Equivalent Circuit

- Error

As the absolute value of $\mid A V R H$ - AVRL| decreases, relative error increases.

MB91F109

EXAMPLE CHARACTERISTICS

(1) " H " Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

$\mathrm{V}_{\boldsymbol{\prime}}$: Threshold when input voltage is set to " H " Level.
$V_{\text {ı }}$: Threshold when input voltage is set to "L" Level.
(2) "L" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

MB91F109

(5) Power Supply Current (fcp = Internal clock frequency)

- INSTRUCTIONS (165 INSTRUCTIONS)

1. How to Read Instruction Set Summary

(1) Names of instructions

Instructions marked with * are not included in CPU specifications. These are extended instruction codes added/extended at assembly language levels.
(2) Addressing modes specified as operands are listed in symbols.

Refer to "2. Addressing mode symbols" for further information.
(3) Instruction types
(4) Hexa-decimal expressions of instructions
(5) The number of machine cycles needed for execution
a: Memory access cycle and it has possibility of delay by Ready function.
b: Memory access cycle and it has possibility of delay by Ready function.
If an object register in a LD operation is referenced by an immediately following instruction, the interlock function is activated and number of cycles needed for execution increases.
c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or if the instruction belongs to instruction format A group, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
For $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d , minimum execution cycle is 1 .
(6) Change in flag sign

- Flag change

C: Change

- : No change

0 : Clear
1 : Set

- Flag meanings

N : Negative flag
Z: Zero flag
V: Over flag
C: Carry flag
(7) Operation carried out by instruction

MB91F109

2. Addressing Mode Symbols

Ri	: Register direct (R0 to R15, AC, FP, SP)
Rj	: Register direct (R0 to R15, AC, FP, SP)
R13	: Register direct (R13, AC)
Ps	: Register direct (Program status register)
Rs	: Register direct (TBR, RP, SSP, USP, MDH, MDL)
CRi	: Register direct (CR0 to CR15)
CRj	: Register direct (CR0 to CR15)
\#i8	: Unsigned 8-bit immediate (-128 to 255)
	Note: -128 to -1 are interpreted as 128 to 255
\#i20	: Unsigned 20-bit immediate (-0X80000 to 0XFFFFFF)
	Note: -0X7FFFF to -1 are interpreted as 0X7FFFF to 0XFFFFF
\#i32	: Unsigned 32-bit immediate (-0X80000000 to 0XFFFFFFFF)
	Note: -0X80000000 to -1 are interpreted as 0X80000000 to 0XFFFFFFFF
\#s5	: Signed 5-bit immediate (-16 to 15)
\#s10	: Signed 10-bit immediate (-512 to 508, multiple of 4 only)
\#u4	: Unsigned 4-bit immediate (0 to 15)
\#u5	: Unsigned 5-bit immediate (0 to 31)
\#u8	: Unsigned 8-bit immediate (0 to 255)
\#u10	: Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)
@dir8	: Unsigned 8-bit direct address (0 to OXFF)
@dir9	: Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)
@dir10	: Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)
label9	: Signed 9-bit branch address (-0X100 to 0XFC, multiple of 2 only)
label12	: Signed 12-bit branch address (-0X800 to 0X7FC, multiple of 2 only)
label20	: Signed 20-bit branch address (-0X80000 to 0X7FFFF)
label32	: Signed 32-bit branch address (-0X80000000 to 0X7FFFFFFF)
@Ri	: Register indirect (R0 to R15, AC, FP, SP)
@Rj	: Register indirect (R0 to R15, AC, FP, SP)
@(R13, Rj)	: Register relative indirect (Rj: R0 to R15, AC, FP, SP)
@(R14, disp10) :	: Register relative indirect (disp10: -0X200 to 0X1FC, multiple of 4 only)
@(R14, disp9)	: Register relative indirect (disp9: -0X100 to 0XFE, multiple of 2 only)
@(R14, disp8)	: Register relative indirect (disp8: -0X80 to 0X7F)
@(R15, udisp6) :	: Register relative (udisp6: 0 to 60, multiple of 4 only)
@Ri+	: Register indirect with post-increment (R0 to R15, AC, FP, SP)
@R13+	: Register indirect with post-increment (R13, AC)
@SP+	: Stack pop
@-SP	: Stack push
(reglist)	: Register list

MB91F109

3. Instruction Types

Type A

Type B

Type C

ADD, ADDN, CMP, LSL, LSR and ASR instructions only
Type *C'

Type D

Type F

MB91F109

4. Detailed Description of Instructions

- Add/subtract operation instructions (10 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
	Rj, Ri \#s5, Ri \#i4, Ri \#i4, Ri	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	A6 A4 A4 A5	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{llll} \hline \text { C C C C C } \\ \text { C C C C } \\ & & \\ \text { C C C C C } \\ \text { C C C C } \end{array}$	$\begin{aligned} & \mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{s5} \rightarrow \mathrm{Ri} \\ & \\ & \\ & \mathrm{Ri}+\operatorname{extu}(\mathrm{i} 4) \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\text { extu }(\mathrm{i} 4) \rightarrow \mathrm{Ri} \end{aligned}$	MSB is interpreted as a sign in assembly language Zero-extension Sign-extension
ADDC	Rj, Ri	A	A7	1	CCCC	$R i+R j+c \rightarrow R i$	Add operation with sign
$\begin{aligned} & \text { ADDN } \\ & \text { *ADDN } \\ & \\ & \text { ADDN } \\ & \text { ADDN2 } \end{aligned}$	Rj, Ri \#s5, Ri \#i4, Ri \#4, Ri	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	A2 A0 A1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{s} 5 \rightarrow \mathrm{Ri} \\ & \\ & \\ & \mathrm{Ri}+\operatorname{extu}(\mathrm{i} 4) \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\text { extu }(\mathrm{i} 4) \rightarrow \mathrm{Ri} \end{aligned}$	MSB is interpreted as a sign in assembly language Zero-extension Sign-extension
SUB	Rj, Ri	A	AC	1	C C C C	$\mathrm{Ri}-\mathrm{Rj} \rightarrow \mathrm{Ri}$	
SUBC	Rj, Ri	A	AD	1	CCCC	$\mathrm{Ri}-\mathrm{Rj}-\mathrm{c} \rightarrow \mathrm{Ri}$	Subtract operation with carry
SUBN	Rj, Ri	A	AE	1	- - - -	$R \mathrm{i}-\mathrm{Rj} \rightarrow \mathrm{Ri}$	

- Compare operation instructions (3 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
CMP	Rj, Ri	A	AA	1	CCCC	Ri-Rj	
* CMP	\#s5, Ri	C'	A8	1	CCCC	Ri - s 5	MSB is interpreted as a sign in assembly
							language
CMP	\#i4, Ri	C	A8	1	CCCC	Ri + extu (i4)	Zero-extension
CMP2	\#i4, Ri	C	A9	1	CCCC	$\mathrm{Ri}+$ extu (i4)	Sign-extension

- Logical operation instructions (12 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
$\begin{array}{\|l\|} \hline \text { AND } \\ \text { AND } \\ \text { ANDH } \\ \text { ANDB } \end{array}$	Ri, Ri Rj, @Ri Rj, @Ri Rj, @Ri	$\begin{aligned} & \text { A } \\ & \text { A } \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 82 \\ & 84 \\ & 85 \\ & 86 \end{aligned}$	$\begin{gathered} 1 \\ 1+2 a \\ 1+2 a \\ 1+2 a \end{gathered}$		$R i \quad \&=R j$ (Ri) $\&=R j$ (Ri) $\&=R j$ $(R i) \&=R j$	Word Word Half word Byte
$\begin{array}{\|l\|} \hline \text { OR } \\ \mathrm{OR} \\ \mathrm{ORH} \\ \mathrm{ORB} \end{array}$	Rj, Ri Rj, @Ri Rj, @Ri Rj, @Ri	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 92 \\ & 94 \\ & 95 \\ & 96 \end{aligned}$	$\begin{gathered} 1 \\ 1+2 a \\ 1+2 a \\ 1+2 a \end{gathered}$	$\begin{aligned} & \text { C C - - } \\ & \text { C C }-= \\ & \text { C C }-=- \\ & \text { C C }-1 \end{aligned}$	$R i \quad \mid=R j$ (Ri) $\mid=R j$ (Ri) $\mid=R j$ (Ri) $\mid=R j$	Word Word Half word Byte
$\begin{aligned} & \text { EOR } \\ & \text { EOR } \\ & \text { EORH } \\ & \text { EORB } \end{aligned}$	Rj, Ri Rj, @Ri Rj, @Ri Rj, @Ri	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 9A } \\ & 9 \mathrm{C} \\ & 9 \mathrm{D} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \\ 1+2 a \\ 1+2 a \\ 1+2 a \end{gathered}$		$R i \wedge=R j$ $(\mathrm{Ri})^{\wedge}=R \mathrm{j}$ $(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$ $(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Word Word Half word Byte

- Bit manipulation arithmetic instructions (8 instructions)

	Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks
BANDL BANDH * BAND	\#u4, @Ri (u4: 0 to 0 FH) \#u4, @Ri (u4: 0 to $0 \mathrm{~F}_{\mathrm{H}}$) \#u8, @Ri	*1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	80 81	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$	$-$	(Ri) $\&=(F O H+u 4)$ $\left(\right.$ Ri) $\&=\left((u 4 \ll 4)+0 F_{H}\right)$ (Ri) $\&=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
BORL BORH * BOR	\#u4, @Ri (u4: 0 to $0 \mathrm{FH}_{\mathrm{H}}$) \#u4, @Ri (u4: 0 to $0 \mathrm{~F}_{\mathrm{H}}$) \#u8, @Ri	*2	C C	90 91	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		(Ri) $\mid=u 4$ (Ri) $\mid=(u 4 \ll 4)$ (Ri) $\mid=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
BEORL BEORH * BEOR	\#u4, @Ri (u4: 0 to 0 FH) \#u4, @Ri (u4: 0 to 0 FH) \#u8, @Ri	*3		$\begin{aligned} & 98 \\ & 99 \end{aligned}$	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		$\begin{aligned} & (\mathrm{Ri})^{\wedge}=u 4 \\ & (\mathrm{Ri})^{\wedge}=(\mathrm{u} 4 \ll 4) \\ & (\mathrm{Ri})^{\wedge}=\mathrm{u} \end{aligned}$	Manipulate lower 4 bits Manipulate upper 4 bits
BTSTL BTSTH	\#u4, @Ri (u4: 0 to 0 FH) \#u4, @Ri (u4: 0 to 0 FH)			88 89	$\begin{aligned} & 2+a \\ & 2+a \end{aligned}$	$\begin{aligned} & \mathrm{OC}-- \\ & \mathrm{CC}-- \end{aligned}$	(Ri) \& $u 4$ (Ri) \& (u4<<4)	Test lower 4 bits Test upper 4 bits

*1: Assembler generates BANDL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BANDH if " $48 \& 0 x$ F0" leaves an active bit. Depending on the value in the " 48 " format, both BANDL and BANDH may be generated.
*2: Assembler generates BORL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BORH if "u8\&0xF0" leaves an active bit.
*3: Assembler generates BEORL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BEORH if "u8\&0xF0" leaves an active bit.

- Add/subtract operation instructions (10 instructions)

	Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks
MUL	Rj, Ri		A	AF	5	CCC-	$\mathrm{Rj} \times \mathrm{Ri} \rightarrow \mathrm{MDH}, \mathrm{MDL}$	32 -bit $\times 32$-bit = 64-bit
MULU	Rj, Ri		A	AB	5	CCC-	$\mathrm{Rj} \times \mathrm{Ri} \rightarrow$ MDH, MDL	Unsigned
MULH	Rj, Ri		A	BF	3	C C - -	$\mathrm{Rj} \times \mathrm{Ri} \rightarrow$ MDL	16 -bit $\times 16$-bit $=32$-bit
MULUH	Rj, Ri		A	BB		C C - -	$\mathrm{Rj} \times \mathrm{Ri} \rightarrow \mathrm{MDL}$	Unsigned
DIVOS	Ri		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 97-4 \\ & 97-5 \\ & 97-6 \\ & 97-7 \\ & 9 \mathrm{~F}-6 \\ & 9 \mathrm{~F}-7 \end{aligned}$		- - - -		Step calculation 32-bit/32-bit $=32$-bit
DIVOU	Ri				1	----		
DIV1	Ri				d	- C-C		
DIV2	Ri				1	- C-C		
DIV3					1	- - - -		
DIV4S					1	- - - -		
* DIV	Ri	*			-	- C-C	MDL/Ri \rightarrow MDL,	
							MDL\%Ri \rightarrow MDH	
* DIVU	Ri	*2			-	- C-C	MDL/Ri \rightarrow MDL, MDL\%Ri \rightarrow MDH	Unsigned

*1: DIVOS, DIV1 $\times 32$, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.
*2: DIVOU and DIV1 $\times 32$ are generated. A total instruction code length of 66 bytes.

MB91F109

- Shift arithmetic instructions (9 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
$\begin{aligned} & \hline \text { LSL } \\ & * \text { LSL } \\ & \text { LSL } \\ & \text { LSL2 } \end{aligned}$	Rj, Ri \#u5, Ri \#u4, Ri \#u4, Ri	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { B6 } \\ & \text { B4 } \\ & \text { B4 } \\ & \text { B5 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & C C-C \\ & C C-C \\ & C C-C \\ & C C-C \end{aligned}$	$\begin{aligned} & \mathrm{Ri} \ll \mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \ll \mathrm{u} 5 \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \ll \mathrm{u} 4 \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \ll(\mathrm{u} 4+16) \rightarrow \mathrm{Ri} \end{aligned}$	Logical shift
$\begin{aligned} & \text { LSR } \\ & \text { * LSR } \\ & \text { LSR } \\ & \text { LSR2 } \end{aligned}$	Rj, Ri \#u5, Ri \#u4, Ri \#u4, Ri	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B0 } \\ & \text { B0 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & C C-C \\ & C C-C \\ & C C-C \\ & C C-C \end{aligned}$	$\begin{aligned} & \mathrm{Ri} \gg \mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \gg \mathrm{Lu} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \gg \mathrm{R} 4 \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \gg(\mathrm{u} 4+16) \rightarrow \mathrm{Ri} \end{aligned}$	Logical shift
$\begin{aligned} & \text { ASR } \\ & \text { * ASR } \\ & \text { ASR } \\ & \text { ASR2 } \end{aligned}$	Rj, Ri \#u5, Ri \#u4, Ri \#u4, Ri	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { BA } \\ & \text { B8 } \\ & \text { B8 } \\ & \text { B9 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & C C-C \\ & C C-C \\ & C C-C \\ & C C-C \end{aligned}$	$\begin{aligned} & \mathrm{Ri} \gg \mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \gg \mathrm{u} 5 \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \gg \mathrm{~L} 4 \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \gg(\mathrm{u} 4+16) \rightarrow \mathrm{Ri} \end{aligned}$	Logical shift

- Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer instruction) (3 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LDI: 32	\#i32, Ri	E	9F-8	3	- - - -	$\mathrm{i} 32 \rightarrow \mathrm{Ri}$	
LDI: 20	\#i20, Ri	C	9B	2	- - - -	$\mathrm{i} 20 \rightarrow \mathrm{Ri}$	Upper 12 bits are zeroextended
$\begin{aligned} & \text { LDI: } 8 \\ & \text { * LDI } \end{aligned}$	$\begin{aligned} & \text { \#i8, Ri } \\ & \# \text { \{i8\| } \mathrm{i} 20 \mid \mathrm{i} 32\}, \mathrm{Ri} \end{aligned}$	B	C0	1	- - - -	$\left\{\begin{array}{l} i 8 \rightarrow \mathrm{Ri} \\ \{i 8\|\mathrm{i} 20\| \mathrm{i} 32\} \rightarrow \mathrm{Ri} \end{array}\right.$	Upper 24 bits are zeroextended

*1: If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection.
If an immediate value contains relative value or external reference, assembler selects i32.

- Memory load instructions (13 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LD	@Rj, Ri	A	04	b	----	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	
LD	@(R13, Rj), Ri	A	00	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	
LD	@(R14, disp10), Ri	B	20	b	- - - -	$(\mathrm{R} 14+\mathrm{disp10}) \rightarrow \mathrm{Ri}$	
LD	@(R15, udisp6), Ri	C	03	b		(R15 + udisp6) $\rightarrow \mathrm{Ri}$	
LD	@R15 +, Ri	E	07-0	b	- -	$(\mathrm{R15}) \rightarrow \mathrm{Ri}, \mathrm{R15}+=4$	
LD	@R15 +, Rs	E	07-8	b	- -	$($ R15) \rightarrow Rs, R15 + = 4	Rs: Special-purpose register
LD	@R15 +, PS	E	07-9	$1+a+b$	CCCC	$(\mathrm{R} 15) \rightarrow \mathrm{PS}, \mathrm{R} 15+=4$	
LDUH	@Rj, Ri	A	05	b	---	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUH	@(R13, Rj), Ri	A	01	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUH	@(R14, disp9), Ri	B	40	b	- - - -	$(\mathrm{R14}+\mathrm{disp9}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@Rj, Ri	A	06	b	-	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@(R13, Rj), Ri	A	02	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@(R14, disp8), Ri	B	60	b	- - - -	$(\mathrm{R14}+\mathrm{disp8}) \rightarrow \mathrm{Ri}$	Zero-extension

Note :The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows:
disp8 $\rightarrow 08=$ disp8:Each disp is a code extension.
disp9 $\rightarrow 08=$ disp9>>1:Each disp is a code extension.
disp10 $\rightarrow 08=$ disp10>>2:Each disp is a code extension.
udisp6 $\rightarrow \mathrm{u} 4=$ udisp6>>2:udisp4 is a 0 extension.

- Memory store instructions (13 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
ST	Ri, @Rj	A	14	a	----	$\mathrm{Ri} \rightarrow$ (Rj)	Word
ST	Ri, @(R13, Rj)	A	10	a	-	$\mathrm{Ri} \rightarrow(\mathrm{R} 13+\mathrm{Rj})$	Word
ST	Ri, @(R14, disp10)	B	30	a	- - - -	$\mathrm{Ri} \rightarrow$ (R14 + disp10)	Word
ST	Ri, @(R15, udisp6)	C	13	a	- - - -	$\mathrm{Ri} \rightarrow$ (R15 + usidp6)	
ST	Ri, @-R15	E	17-0	a	- - - -	R15- = 4, Ri \rightarrow (R15)	
ST	Rs, @-R15	E	17-8	a	- - - -	R15- = 4, Rs \rightarrow (R15)	Rs: Special-purpose register
ST	PS, @-R15	E	17-9	a	--- -	R15-= 4, PS \rightarrow (R15)	
STH	Ri, @Rj	A	15	a	- -	$\mathrm{Ri} \rightarrow$ (Rj)	Half word
STH	Ri, @(R13, Rj)	A	11	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R} 13+\mathrm{Rj})$	Half word
STH	Ri, @(R14, disp9)	B	50	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R14}+\mathrm{disp} 9)$	Half word
STB	Ri, @Rj	A	16	a	- -	$\mathrm{Ri} \rightarrow$ (Rj)	Byte
STB	Ri, @(R13, Rj)	A	12	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R13}+\mathrm{Rj})$	Byte
STB	Ri, @(R14, disp8)	B	70	a	- - - -	$\mathrm{Ri} \rightarrow$ (R14 + disp8)	Byte

Note :The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows:
disp8 $\rightarrow 08=$ disp8:Each disp is a code extension.
disp9 $\rightarrow 08=$ disp9>>1:Each disp is a code extension.
disp10 $\rightarrow 08=$ disp10>>2:Each disp is a code extension.
udisp6 \rightarrow u4 $=$ udisp6>>2:udisp4 is a 0 extension.

- Transfer instructions between registers/special-purpose registers transfer instructions (5 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
MOV	Rj, Ri	A	8B	1	----	$\mathrm{Rj} \rightarrow \mathrm{Ri}$	Transfer between general-purpose registers
MOV	Rs, Ri	A	B7	1	- - - -	$\mathrm{Rs} \rightarrow \mathrm{Ri}$	Rs: Special-purpose register
MOV	Ri, Rs	A	B3	1	- - - -	$\mathrm{Ri} \rightarrow \mathrm{Rs}$	Rs: Special-purpose register
MOV MOV	$\begin{aligned} & \text { PS, Ri } \\ & \text { Ri, PS } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 17-1 \\ & 07-1 \end{aligned}$	1	$\overline{\mathrm{C}} \overline{\mathrm{C}} \overline{\mathrm{C}} \overline{\mathrm{C}}$	$\begin{aligned} & \mathrm{PS} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \rightarrow \mathrm{PS} \end{aligned}$	

MB91F109

- Non-delay normal branch instructions (23 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
JMP	@Ri	E	97-0	2	----	$\mathrm{Ri} \rightarrow \mathrm{PC}$	
CALL CALL	label12 @Ri	F	$\begin{gathered} \text { D0 } \\ 97-1 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	- - - -	$\begin{aligned} & \mathrm{PC}+2 \rightarrow \mathrm{RP}, \\ & \mathrm{PC}+2+\text { rel11 } \times 2 \rightarrow \mathrm{PC} \\ & \mathrm{PC}+2 \rightarrow \mathrm{RP}, \mathrm{Ri} \rightarrow \mathrm{PC} \end{aligned}$	
RET		E	97-2	2	----	RP \rightarrow PC	Return
INT	\#u8	D	1 F	3+3a	----	$\begin{aligned} & \mathrm{SSP}-=4, \mathrm{PS} \rightarrow(\mathrm{SSP}), \\ & \mathrm{SSP}-=4, \\ & \mathrm{PC}+2 \rightarrow(\mathrm{SSP}), \\ & 0 \rightarrow 1 \text { flag, } \\ & 0 \rightarrow \mathrm{~S} \text { flag, } \\ & (\mathrm{TBR}+3 \mathrm{FC}-\mathrm{u} 8 \times 4) \rightarrow \mathrm{PC} \end{aligned}$	
INTE		E	9F-3	$3+3 \mathrm{a}$	- - - -	$\begin{aligned} & \mathrm{SSP}-=4, \mathrm{PS} \rightarrow(\mathrm{SSP}), \\ & \mathrm{SSP}-=4, \\ & \mathrm{PC}+2 \rightarrow(\mathrm{SSP}), \\ & 0 \rightarrow \mathrm{~S} \text { flag, }, \\ & (\mathrm{TBR}+3 \mathrm{D} 8-\mathrm{u} 8 \times 4) \rightarrow \mathrm{PC} \end{aligned}$	For emulator
RETI		E	97-3	$2+2 a$	CCCC	$\begin{aligned} & (\mathrm{R} 15) \rightarrow \mathrm{PC}, \mathrm{R} 15-=4, \\ & (\text { R15 }) \rightarrow \text { PS, R15 }-=4 \end{aligned}$	
BNO	label9	D	E1	1	- - - -	Non-branch	
BRA	label9	D	E0	2	- - - -	$\mathrm{PC}+2+\mathrm{rel} \times 2 \rightarrow \mathrm{PC}$	
BEQ	label9	D	E2	2/1	- - - -	PCif $Z==1$	
BNE	label9	D	E3	2/1	- - - -	PCif $Z==0$	
BC	label9	D	E4	2/1	-	PCif $\mathrm{C}==1$	
BNC	label9	D	E5	2/1	-	$\mathrm{PCifif} \mathrm{C}==0$	
BN	label9	D	E6	2/1	- -	PCif $\mathrm{N}==1$	
BP	label9	D	E7	2/1	- -	PCif $\mathrm{N}==0$	
BV	label9	D	E8	2/1	- -	PCif $\mathrm{V}==1$	
BNV	label9	D	E9	2/1	----	PCif $\mathrm{V}==0$	
BLT	label9	D	EA	$2 / 1$	----	PCif V xor $\mathrm{N}==1$	
BGE	label9	D	EB	$2 / 1$	----	PCif V xor $\mathrm{N}==0$	
BLE	label9	D	EC	$2 / 1$	----	PCif (V xor N) or $\mathrm{Z}==1$	
BGT	label9	D	ED	2/1	- - - -	PCif (V xor N) or $\mathrm{Z}==0$	
BLS	label9	D	EE	2/1	-----	$\begin{aligned} & \text { PCif C or } Z==1 \\ & \text { PCif } C \text { or } Z=0 \end{aligned}$	

Notes: • " $2 / 1$ " in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.

- The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows.
label9 \rightarrow rel8 = (label9 - PC - 2)/2 label12 \rightarrow rel11 $=($ label12 - PC -2$) / 2$
- RETI must be operated while S flag $=0$.
- Branch instructions with delays (20 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
JMP:D	@Ri	E	9F-0	1	----	$\mathrm{Ri} \rightarrow \mathrm{PC}$	
$\begin{aligned} & \text { CALL:D } \\ & \text { CALL:D } \end{aligned}$	label12 @Ri	F	$\begin{gathered} \text { D8 } \\ 9 \mathrm{~F}-1 \end{gathered}$	1		$\begin{aligned} & \mathrm{PC}+4 \rightarrow \mathrm{RP}, \\ & \mathrm{PC}+2+\mathrm{rel11} \times 2 \rightarrow \mathrm{PC} \\ & \mathrm{PC}+4 \rightarrow \mathrm{RP}, \mathrm{Ri} \rightarrow \mathrm{PC} \end{aligned}$	
RET:D		E	9F-2	1	----	RP \rightarrow PC	Return
BNO:D BRA:D BEQ:D BNE:D BC:D BNC:D BN:D BP:D BV:D BNV:D BLT:D BGE:D BLE:D BGT:D BHI:D	label9	D D	$\begin{aligned} & \text { F1 } \\ & \text { F0 } \\ & \text { F2 } \\ & \text { F3 } \\ & \text { F4 } \\ & \text { F5 } \\ & \text { F6 } \\ & \text { F7 } \\ & \text { F8 } \\ & \text { F9 } \\ & \text { FA } \\ & \text { FB } \\ & \text { FC } \\ & \text { FD } \\ & \text { FE } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		Non-branch $\mathrm{PC}+2+\mathrm{rel} 8 \times 2 \rightarrow \mathrm{PC}$ PCif $Z==1$ PCif $Z==0$ PCif $\mathrm{C}==1$ PCif $\mathrm{C}==0$ PCif $\mathrm{N}==1$ PCif $\mathrm{N}=0$ PCif $V==1$ PCif $\mathrm{V}==0$ PCif $V \operatorname{xor} \mathrm{~N}==1$ PCif V xor $\mathrm{N}==0$ PCif (V xor N) or $Z==1$ PCif (V xor N) or $\mathrm{Z}==0$ PCif C or $\mathrm{Z}==1$ PCif C or $\mathrm{Z}==0$	

Notes: - The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows.
label9 \rightarrow rel8 $=($ label $9-$ PC - 2)/2 label12 \rightarrow rel11 $=($ label12 - PC -2$) / 2$

- Delayed branch operation always executes next instruction (delay slot) before making a branch.
- Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other instruction is stored, this device may operate other operation than defined.

The instruction described " 1 " in the other cycle column than branch instruction.
The instruction described "a", "b", "c" or "d" in the cycle column.

MB91F109

- Direct addressing instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
DMOV	@dir10, R13	D	08	b	- -	(dir10) \rightarrow R13	Word
DMOV	R13, @dir10	D	18	a	- -	R13 \rightarrow (dir10)	Word
DMOV	@dir10, @R13+	D	0 C	2 a	-	$($ dir10 $) \rightarrow$ (R13), R13 + = 4	Word
DMOV	@R13+, @dir10	D	1 C	2a	-	(R13) \rightarrow (dir10), R13 + = 4	Word
DMOV	@dir10, @-R15	D	OB	2a	-	R15-= 4, (dir10) \rightarrow (R15)	Word
DMOV	@R15+, @dir10	D	1B	2a	- - - -	$(\mathrm{R} 15) \rightarrow$ (dir10), R15 $+=4$	Word
DMOVH	@dir9, R13	D	09	b	-	(dir9) \rightarrow R13	Half word
DMOVH	R13, @dir9	D	19	a	- - - -	R13 \rightarrow (dir9)	Half word
DMOVH	@dir9, @R13+	D	0D	2a	- - - -	$(\mathrm{dir9}) \rightarrow(\mathrm{R} 13), \mathrm{R} 13+=2$	Half word
DMOVH	@R13+, @dir9	D	1D	2a		$(\mathrm{R} 13) \rightarrow$ (dir9), R13 + = 2	Half word
DMOVB	@dir8, R13	D	OA	b	- -	(dir8) \rightarrow R13	Byte
DMOVB	R13, @dir8	D	1A	a	- - - -	R13 \rightarrow (dir8)	Byte
DMOVB	@dir8, @R13+	D	OE	2 a	-	$($ dir8) \rightarrow (R13), R13 + +	Byte
DMOVB	@R13+, @dir8	D	1E	2a		$($ R13 $) \rightarrow$ (dir8), R13 + +	Byte

Note :The relations between the dir field of TYPE-D in the instruction format and the assembler description from disp8 to disp10 are as follows:
disp8 \rightarrow dir + disp8:Each disp is a code extension
disp9 \rightarrow dir $=$ disp9>>1:Each disp is a code extension
disp10 \rightarrow dir $=$ disp10>>2:Each disp is a code extension

- Resource instructions (2 instructions)

Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks	
LDRES	@Ri+,	$\# u 4$	C	BC	a	----	$(R i) \rightarrow u 4$ resource $R i+=4$	u4: Channel number
STRES	$\# u 4$,	$@ R i+$	C	$B D$	a	----	$u 4$ resource $\rightarrow(R i)$ $R i+=4$	u4: Channel number

- Co-processor instructions (4 instructions)

Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks	
COPOP	\#u4, \#CC, CRj, CRi	E	$9 \mathrm{~F}-\mathrm{C}$	$2+\mathrm{a}$	----	Calculation	
COPLD	\#u4, \#CC, Rj, CRi	E	$9 \mathrm{~F}-\mathrm{D}$	$1+2 \mathrm{ai}$	----	$\mathrm{Rj} \rightarrow \mathrm{CRi}$	
COPST	\#u4, \#CC, CRj, Ri	E	$9 \mathrm{~F}-\mathrm{E}$	$1+2 \mathrm{a}$	----	$\mathrm{CRj} \rightarrow \mathrm{Ri}$	
COPSV	\#u4, \#CC, CRj, Ri	E	$9 \mathrm{~F}-\mathrm{F}$	$1+2 \mathrm{a}$	----	$\mathrm{CRj} \rightarrow \mathrm{Ri}$	No error traps

- Other instructions (16 instructions)

	Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks
NOP			E	9F-A	1	----	No changes	
ANDCCR ORCCR	$\begin{aligned} & \text { \#u8 } \\ & \text { \#u8 } \end{aligned}$		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 83 \\ & 93 \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	$\begin{array}{lll} \mathrm{C} C . C \\ \text { C C C C } \end{array}$	CCR and u8 \rightarrow CCR CCR or u8 \rightarrow CCR	
STILM	\#u8		D	87	1	- - - -	i8 \rightarrow ILM	Set ILM immediate value
ADDSP	\#s10		D	A3	1	- - - -	R15 + = s10	ADD SP instruction
EXTSB EXTUB EXTSH EXTUH	$\begin{aligned} & \mathrm{Ri} \\ & \mathrm{Ri} \\ & \mathrm{Ri} \\ & \mathrm{Ri} \end{aligned}$		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 97-8 \\ & 97-9 \\ & 97-A \\ & 97-B \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		Sign extension $8 \rightarrow 32$ bits Zero extension $8 \rightarrow 32$ bits Sign extension $16 \rightarrow 32$ bits Zero extension $16 \rightarrow 32$ bits	
LDMO LDM1 * LDM	(reglist) (reglist) (reglist)		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 8 \mathrm{C} \\ & 8 \mathrm{D} \end{aligned}$	*4		(R15) \rightarrow reglist, R15 increment (R15) \rightarrow reglist, R15 increment (R15 + +) \rightarrow reglist,	Load-multi R0 to R7 Load-multi R8 to R15 Load-multi R0 to R15
STMO STM1 * STM2	(reglist) (reglist) (reglist)		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	8E 8F	* * 6		R15 decrement, reglist \rightarrow (R15) R15 decrement, reglist \rightarrow (R15) reglist \rightarrow (R15 + +)	Store-multi R0 to R7 Store-multi R8 to R15 Store-multi R0 to R15
ENTER	\#u10		D	OF	1+a	- - - -	$\begin{aligned} & \text { R14 } \rightarrow \text { (R15-4), } \\ & \text { R15-4 } \rightarrow \text { R14, } \\ & \text { R15-u10 } \rightarrow \text { R15 } \end{aligned}$	Entrance processing of function
LEAVE			E	9F-9	b	- - - -	$\begin{aligned} & \text { R14 + 4 } \rightarrow \text { R15 }, \\ & (\text { R15 - 4) } \rightarrow \text { R14 } \end{aligned}$	Exit processing of function
XCHB	@Rj, Ri		A	8A	2a	- - - -	$\begin{aligned} & \mathrm{Ri} \rightarrow \mathrm{TEMP}, \\ & (\mathrm{Rj}) \rightarrow \mathrm{Ri}, \\ & \mathrm{TEMP} \rightarrow(\mathrm{Rj}) \end{aligned}$	For SEMAFO management Byte data

*1: In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler description s10 is as follows.
$s 10 \rightarrow s 8=s 10 \gg 2$
*2: In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler description u10 is as follows.
$u 10 \rightarrow u 8=u 10 \gg 2$
*3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified, assembler generates LDM1. Both LDM0 and LDM1 may be generated.
*4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following calculation; $a \times(n-1)+b+1$ when " n " is number of registers specified.
*5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified, assembler generates STM1. Both STM0 and STM1 may be generated.
*6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following calculation; $a \times n+1$ when " n " is number of registers specified.

MB91F109

- 20-bit normal branch macro instructions

Mnemonic		Operation	Remarks	
* CALL20	label20, Ri	Next instruction address \rightarrow RP, label $20 \rightarrow \mathrm{PC}$	Ri: Temporary register	*
* BRA20	label20, Ri	label20 \rightarrow PC	Ri: Temporary register	*2
* BEQ20	label20, Ri	if $(Z==1)$ then label20 \rightarrow PC	Ri: Temporary register	*3
* BNE20	label20, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register	*
* BC20	label20, Ri	ifs $/ \mathrm{C}==1$	Ri: Temporary register	*3
* BNC20	label20, Ri	ifs $/ \mathrm{C}==0$	Ri: Temporary register	*3
* BN20	label20, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register	*3
* BP20	label20, Ri	ifs/N $==0$	Ri: Temporary register	*3
* BV20	label20, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register	*3
* BNV20	label20, Ri	ifs/V $=$ = 0	Ri: Temporary register	*3
* BLT20	label20, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
* BGE20	label20, Ri	ifs/ V xor $N==0$	Ri: Temporary register	* 3
* BLE20	label20, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	* 3
* BGT20	label20, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	* 3
* BLS20	label20, Ri	ifs/C or $Z==1$	Ri: Temporary register	*3
* BHI20	label20, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*3

*1: CALL20
(1) If label20 $-\mathrm{PC}-2$ is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL label12
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 \#label20, Ri
CALL @Ri
*2: BRA20
(1) If label20 $-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:20 \#label20, Ri JMP @Ri
*3: Bcc20 (BEQ20 to BHI20)
(1) If label20 $-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows;

Bcc label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

```
BxcC false xcc is a revolt condition of cc
LDI:20 #label20, Ri
JMP @Ri
false:
```

- 20-bit delayed branch macro instructions

Mnemonic	Operation	Remarks	
* CALL20:D label20, Ri	Next instruction address $+2 \rightarrow$ RP, label20 \rightarrow PC	Ri: Temporary register	${ }^{*}$
*BRA20:D label20, Ri	label20 \rightarrow PC	Ri: Temporary register	${ }^{2}$
* BEQ20:D label20, Ri	if $(Z==1)$ then label20 \rightarrow PC	Ri: Temporary register	*3
* BNE20:D label20, Ri	ifs $/ Z=0$	Ri: Temporary register	*3
* BC20:D label20, Ri	ifs/C $=$ = 1	Ri: Temporary register	*
* BNC20:D label20, Ri	ifs/C $=$ = 0	Ri: Temporary register	*
* BN20:D label20, Ri	ifs/N $=1$	Ri: Temporary register	*
* BP20:D label20, Ri	ifs/ $\mathrm{N}=0$	Ri: Temporary register	*
* BV20:D label20, Ri	ifs/V $=$ = 1	Ri: Temporary register	*3
* BNV20:D label20, Ri	ifs/V $=0$	Ri: Temporary register	*3
* BLT20:D label20, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
* BGE20:D label20, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register	*3
* BLE20:D label20, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	*
*BGT20:D label20, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	*
*BLS20:D label20, Ri	ifs/C or $Z==1$	Ri: Temporary register	*
* BHI20:D label20, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*

*1: CALL20:D
(1) If label20 $-\mathrm{PC}-2$ is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL:D label12
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 \#label20,Ri
CALL:D @Ri
*2: BRA20:D
(1) If label20 - PC - 2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA:D label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 \#label20, Ri JMP:D @Ri
*3: Bcc20:D (BEQ20:D to BHI20:D)
(1) If label20 - PC - 2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc:D label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false xcc is a revolt condition of cc
LDI:20 \#label20,Ri
JMP:D @Ri
false:

MB91F109

- 32-bit normal macro branch instructions

Mnemonic		Operation	Remarks	
* CALL32	label32, Ri	Next instruction address \rightarrow RP, label32 \rightarrow PC	Ri: Temporary register	*1
* BRA32	label32, Ri	label32 \rightarrow PC	Ri: Temporary register	*2
* BEQ32	label32, Ri	if $(Z==1)$ then label32 \rightarrow PC	Ri: Temporary register	*3
* BNE32	label32, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register	*3
* BC32	label32, Ri	ifs/C $=$ = 1	Ri: Temporary register	*3
* BNC32	label32, Ri	ifs/C $=$ = 0	Ri: Temporary register	*3
* BN32	label32, Ri	ifs/N $=1$	Ri: Temporary register	*3
* BP32	label32, Ri	ifs/N $=0$	Ri: Temporary register	*3
* BV32	label32, Ri	ifs/V $=$ = 1	Ri: Temporary register	*3
* BNV32	label32, Ri	ifs $/ \mathrm{V}=0$	Ri: Temporary register	*3
* BLT32	label32, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
* BGE32	label32, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register	* 3
* BLE32	label32, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BGT32	label32, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	*3
* BLS32	label32, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BHI32	label32, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*3

*1: CALL32
(1) If label $32-\mathrm{PC}-2$ is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL label12
(2) If label32 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 \#label32, Ri
CALL @Ri
*2: BRA32
(1) If label32-PC - 2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA label9
(2) If label32 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:32 \#label32, Ri JMP @Ri
*3: Bcc32 (BEQ32 to BHI32)
(1) If label32-PC -2 is between -0×100 and $+0 \times f e$, instruction is generated as follows;

Bcc label9
(2) If label32-PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

```
Bxcc false xcc is a revolt condition of cc
LDI:32 #label32, Ri
JMP @Ri
false:
```

- 32-bit delayed macro branch instructions

Mnemonic	Operation	Remarks	
* CALL32:D label32, Ri	Next instruction address $+2 \rightarrow$ RP, label32 \rightarrow PC	Ri: Temporary register	${ }^{*}$
* BRA32:D label32, Ri	label32 \rightarrow PC	Ri: Temporary register	${ }^{2}$
* BEQ32:D label32, Ri	if $(Z==1)$ then label32 \rightarrow PC	Ri: Temporary register	*3
* BNE32:D label32, Ri	ifs $/ Z=0$	Ri: Temporary register	*3
* BC32:D label32, Ri	ifs/C $=$ = 1	Ri: Temporary register	*3
* BNC32:D label32, Ri	ifs/C $=$ = 0	Ri: Temporary register	*3
* BN32:D label32, Ri	ifs/N $==1$	Ri: Temporary register	*3
* BP32:D label32, Ri	ifs/ $\mathrm{N}=0$	Ri: Temporary register	*3
* BV32:D label32, Ri	ifs/V $=$ = 1	Ri: Temporary register	*3
* BNV32:D label32, Ri	ifs/V $==0$	Ri: Temporary register	3
* BLT32:D label32, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
* BGE32:D label32, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register	*3
* BLE32:D label32, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BGT32:D label32, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	*3
* BLS32:D label32, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BHI32:D label32, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*

*1: CALL32:D
(1) If label32-PC -2 is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL:D label12
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 \#label32, Ri
CALL:D @Ri
*2: BRA32:D
(1) If label32 - PC - 2 is between -0×100 and $+0 x f e$, instruction is generated as follows; BRA:D label9
(2) If label32-PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 \#label32, Ri JMP:D @Ri
*3: Bcc32:D (BEQ32:D to BHI32:D)
(1) If label $32-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc:D label9
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false $\quad x c c$ is a revolt condition of $c c$
LDI:32 \#label32,Ri
JMP:D @Ri
false:

MB91F109

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F109PFV-XXX	100-pin Plastic LQFP (FPT-100P-M05)	
MB91F109PF-XXX	100-pin Plastic QFP (FPT-100P-M06)	

MB91F109

PACKAGE DIMENSIONS

Dimensions in mm (inches)
© 2000 FUJITSU LIMTED F100007S-2C-4

MB91F109

FUJITSU LIMITED

For further information please contact:

 JapanFUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0009
© FUJITSU LIMITED Printed in Japan

[^0]: () : Access

 R/W : Readable and writable

 - : Unused

