Current Transducer LF 505-S For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). # Preliminary # $I_{PN} = 500 A$ #### **Electrical data** | I _{PN} | Primary nominal r.m.s. current | | 500 | | Α | |---------------------------|----------------------------------|----------------------------|--|----------------------------------|----------| | I _P | Primary current, measuring range | | 0 ± 800 | | Α | | $\dot{R}_{_{\mathrm{M}}}$ | Measuring resistance | | $\mathbf{R}_{_{\mathrm{M}\;\mathrm{min}}}$ | $R_{_{ m M\ ma}}$ | ıx | | | with ± 15 V | @ ± 500 A _{max} | 0 | 60 | Ω | | | | @ ± 800 A max | 0 | 11 | Ω | | | with ± 18 V | @ ± 500 A max | 0 | 92 | Ω | | | | @ ± 800 A max | 0 | 30 | Ω | | | with ± 24 V | @ ± 500 A max | 5 | 149 | Ω | | | | @ ± 800 A max | 5 | 65 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 100 | | mΑ | | K _N | Conversion ratio | | 1:500 | 1:5000 | | | V _C | Supply voltage (± 5 %) |) | ± 15 | 24 | V | | I _c | Current consumption | | 24 (@ ± | 24 (@ ± 18 V)+ I _s m. | | | $\ddot{\mathbf{V}}_{d}$ | R.m.s. voltage for AC is | solation test, 50 Hz, 1 mn | 3 | | , kV | # Accuracy - Dynamic performance data | $\mathbf{x}_{\scriptscriptstyle G}$ | Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity | | ± 0.6
< 0.1 | | %
% | |-------------------------------------|---|------------|----------------------|-----------------------|-------------------| | I _о | Offset current @ I_p = 0, T_A = 25°C
Thermal drift of I_O - 10 |)°C + 70°C | Typ
± 0.3 | Max
± 0.4
± 0.5 | mA
mA | | t _r
di/dt
f | Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB) | | < 1
> 100
DC 1 | 00 | μs
A/μs
kHz | #### General data | T _A T _S R _S m | Ambient operating temperature
Ambient storage temperature
Secondary coil resistance @
Mass
Standards ²⁾ | T _A = 70°C | - 10 + 70
- 25 + 85
70
230
EN 50155 | °C
°C
Ω | |--|--|------------------------------|---|---------------| | | | | EN 50178 | | Notes: 1) With a di/dt of 100 A/µs #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. ## **Advantages** - Excellent accuracy - · Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 010327/4 ²⁾ A list of corresponding tests is available ### **Dimensions LF 505-S** (in mm. 1 mm = 0.0394 inch) ### **Mechanical characteristics** • General tolerance Fastening • Primary through-hole • Connection of secondary ± 0.5 mm see drawing 30.2 x 30.2 mm MOLEX 5045-03/AG #### **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C. - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.