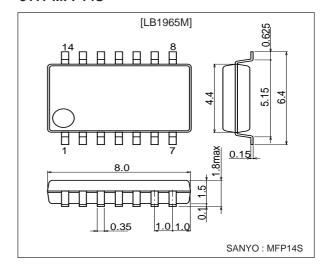


LB1965M

Two-Phase Unipolar Driver for Variable-Speed Fan Motor


Features

- With only a few peripheral parts including a thermistor, ambient temperature dependent continuous speed control can be implemented. This allows low-speed startup (100% duty drive at startup).
- Settable minimum rotation speed for low temperature
- Built-in thermistor voltage amplification circuit assures high precision of ambient temperature to rotation speed ratio
- Built-in motor lockup protection and automatic recovery circuit
 - Output current Io = 1.5A, built-in output stage protection Zener diode
 - -> Low-noise protection with chip capacitors also possible
- Built-in thermal protection
- FG output
- Direct Hall element connection possible

Package Dimensions

unit: mm

3111-MFP14S

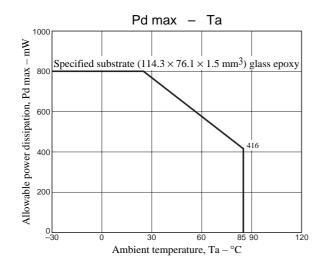
Specifications

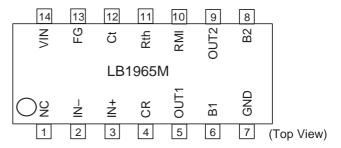
Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum input current	ICC max	t ≤ 20 ms	200	mA
Maximum applied output voltage	VOUT max		Internal	V
Maximum output current	I out max		1.5	Α
Current flowing into FG	IRD max		10	mA
FG applied voltage	VRD max		50	V
Allowable power dissipation	Pd max	Mounted on a specified PCB	0.8	W
		$(114.3 \times 76.1 \times 1.5 \text{ mm}^3 \text{ glass epoxy})$		
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Allowable Operating Ranges at Ta = 25°C

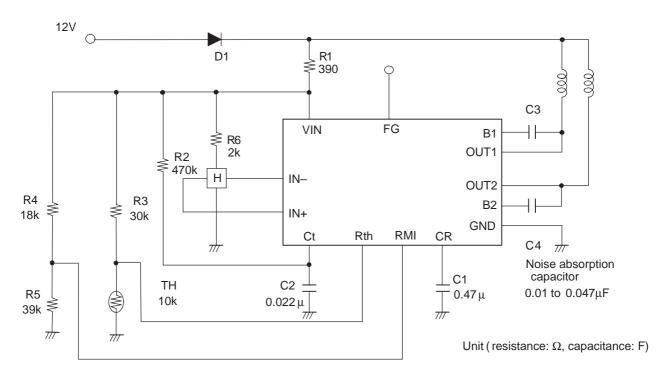

Parameter	Symbol	Conditions	Ratings	Unit
Input current range	ICC		6.0 to 50	mA
Hall amplifier common mode input	VICM		0 to VIN-1.5	V
voltage range				
RMI input voltage range	VRMI		0.3 to VIN	V
Rth input voltage range	VICM		0 to VIN-1	V


Electrical Characteristics at Ta = 25°C, ICC = 10 mA

Davamatan	Cymphol	Conditions	Ratings			I lait
Parameter	Symbol	Conditions	min	typ	max	Unit
Output limiter voltage	VoLM1	lo = 0.1A	30	32	34	V
	Vosat1	lo = 0.5A		0.95	1.2	V
Output saturation voltage	Vosat2	lo = 1.0A		1.15	1.5	V
	Vosat3	lo = 1.5A		1.4	2.0	V
Input voltage	VIN	Icc = 7.0 mA	6.4	6.7	7.0	V
Amplifier input offset voltage	VOFF		-7.0	0	7.0	mV
Amplifier input bias current	IBA		-250			nA
FG output saturation voltage	VFG(sat)	IFG = 5 mA		0.15	0.3	V
C charge voltage	IC1	C = GND	2.7	3.9	5.0	μΑ
C discharge voltage	IC2	C = VIN	0.35	0.50	0.65	μΑ
Comp input threshold voltage	VTH1		0.77	0.8VIN	0.83	V
	VTH2		0.42	0.45VIN	0.48	V
Ct discharge voltage	VCT		0.20	0.22VIN	0.24	V
Rt input current	Irt	VRT = GND		1	3	μΑ
VRt amplification	VRt	RT = OPEN	1.52	1.56	1.60	times
RMI offset voltage	VRMIoff		-7	0	+7	mA
Thermal protection operating voltage	TSD	Design target value*	150	180	210	°C

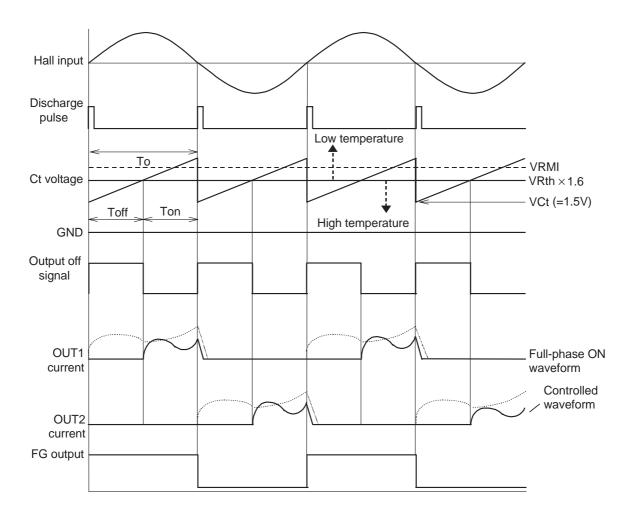
^{*} Design target values are not measured.

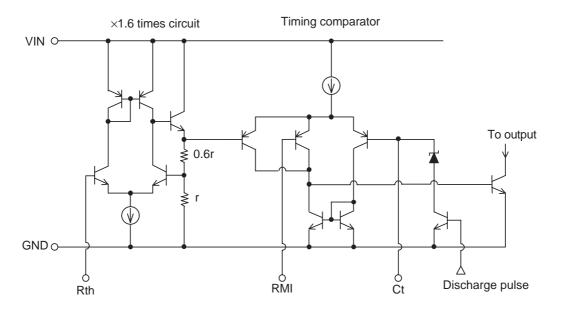
Pin Assignment



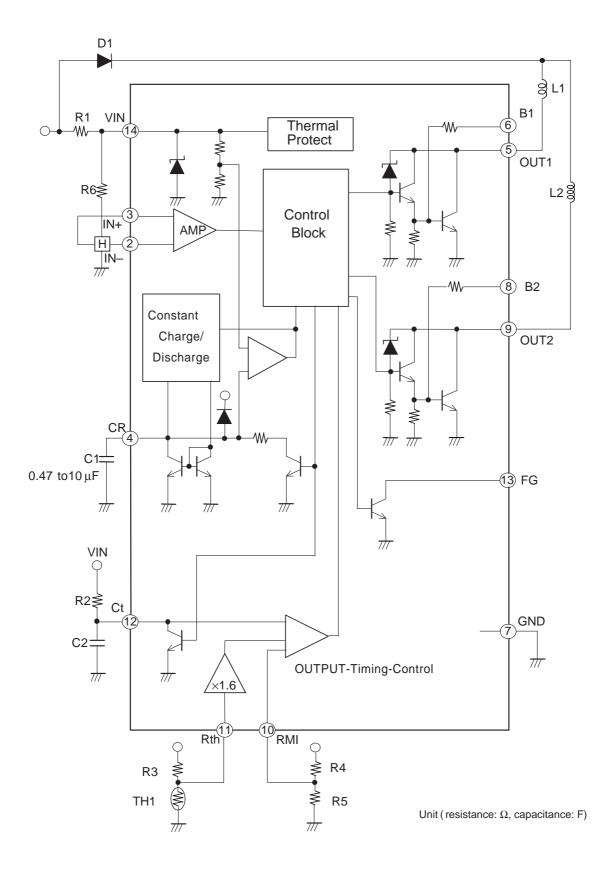
Truth Table

IN+	IN-	Ct	Rt	RMI	CR	OUT1	OUT2	FG	Mode
Н	L	Н	L	Н	L	Н	L	L	Full speed
L	Н	Н	L	Н	L	L	Н	Н	Full speed
Н	L	Н	Н	L	L	Н	L	L	Minimum speed
L	Н	Н	Н	L	L	L	Н	Н	Minimum speed
_	-	L	Н	Н	L	Н	Н	_	Low speed
_	-	_	_	-	Н	Н	Н	_	Lockup protection


Sample Application Circuit



The above circuit is an example for ambient temperature based speed control using a thermistor. The thermistor voltage (Rth pin voltage) is multiplied internally by 1.6 and compared to the voltage at the Ct pin. With the above settings and at $Ta=25^{\circ}C$, the Rth pin voltage is interrupted for the interval t off as defined by the equation below. At $Ta=45^{\circ}C$, because the Rth pin voltage \times 1.6 becomes less than Vct (=1.5V), there is no cut-off interval and the motor is driven with a duty ratio of 100%. At low temperatures, the thermistor voltage (Rth \times 1.6) will rise, but minimum rotation speed is maintained to a value defined by the RMI pin voltage. Therefore minimum rotation speed at temperatures below $Ta=25^{\circ}C$ is constant.


$$t = -C2 \cdot R2 \cdot In \left(\frac{VIN - VRth \times 1.6}{VIN - VCt} \right)$$

Output Timing Chart

Block Diagram

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 2000. Specifications and information herein are subject to change without notice.