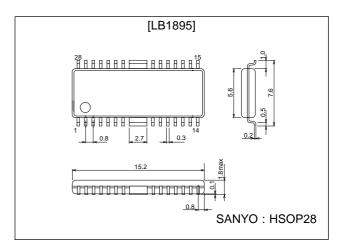


3-Phase Brushless Motor Driver for CD-ROM Spindle Motors

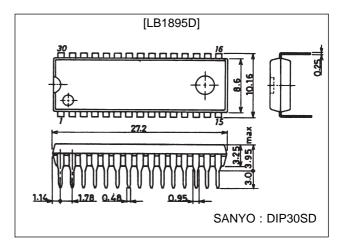
Overview

The LB1895 and LB1895D are 3-phase brushless motor drivers for use in CD-ROM spindle motors.


Functions and Features

- · Current linear drive
- V-type control amplifier built in
- Because the power supply for the bias circuit on the upper output side is separate, output with low saturation can be attained by boosting only that power supply. (Effective when $V_{CC}=5\ V)$
- Because current is detected on the upper side, there is no voltage loss due to the RF resistance. In addition, the RF voltage reduces the power dissipation within the IC. (Effective when $V_{CC}=5~V$)
- · Start/Stop function built in
- Thermal shutdown circuit built in
- · Overcurrent protection circuit built in
- Two-channel Hall signal comparator built in.
 (For detecting rotation direction and Hall FG output)
- · Hall device bias built in

Package Dimensions


unit: mm

3222-HSOP28

unit : mm

3196-DIP30SD

Specifications

Maximum Ratings at $Ta = 25 \,^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} 1 max		7	V
Maximum supply voltage 2	V _{CC} 2 max		14.4	V
Maximum supply voltage 3	V _{CC} 3 max		14.4	V
Applied output voltage	V _O max		14.4	V
Applied input voltage	V _I max		V _{CC} 1	V
Output current	I _O max		1.0	Α
		Indepent IC [LB1895]	0.5	W
Allowable power dissipation	Pd max	Glass epoxy board (114.3 × 762 × 1.5 mm) [LB1895D]	2.4	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Operating Conditions at $Ta = 25 \,^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1		4 to 6	V
Supply voltage	V _{CC} 2	≧ V _{CC} 1	4 to 13.6	V
	V _{CC} 3		2 to 13.6	V

Application Examples at Ta = 25 $^{\circ}C$

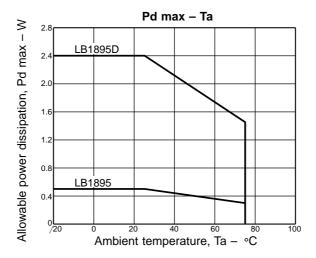
(1) 12 V model

Power supply pins	Conditions	Ratings	Unit
V _{CC} 1	REG. voltage	4 to 6	V
$V_{CC}2 = V_{CC}3$	UN-REG. voltage	4 to 13.6	V

(2) 5 V model

Power supply pins	Conditions	Ratings	Unit
$V_{CC}1 = V_{CC}3$	REG. voltage	4 to 6	V
V _{CC} 2	Boost voltage or REG. voltage (Note)	4 to 13.6	V

Note: If $V_{CC}2$ is used as the boost voltage, output with low saturation can be used.


LB1895, 1895D

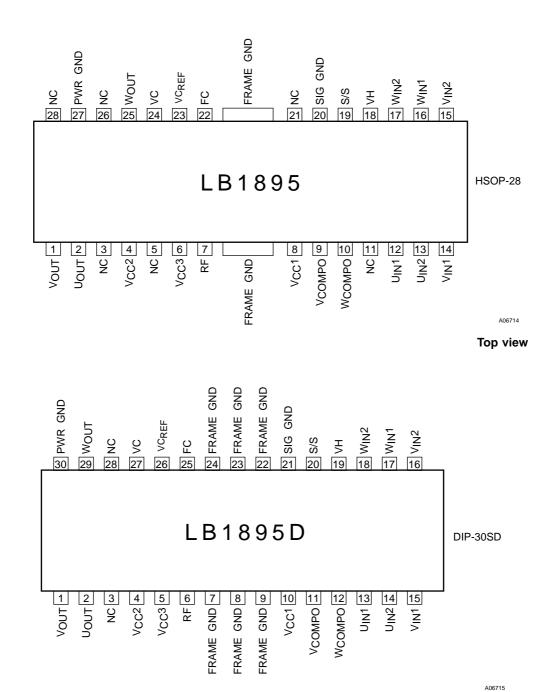
Electrical Characteristics at Ta = 25 °C, $V_{CC}1$ = 5 V, $V_{CC}2$ = $V_{CC}3$ = 12 V (Unless otherwise specified)

Parameter	Symbol	Conditions	min	typ	max	Unit	
[Supply current]							
Supply current 1	I _{CC} 1	$VC = VC_{REF}$		4	7	mA	
Supply current 2	I _{CC} 2	$VC = VC_{REF}$		0	0.5	mA	
Supply current 3	I _{CC} 3	$VC = VC_{REF}$		150	250	μΑ	
Output quiescent current 1	I _{CC} 1 _{OQ}	V _{S/S} = 0 V			200	μΑ	
Output quiescent current 2	I _{CC} 2 _{OQ}	V _{S/S} = 0 V			30	μΑ	
Output quiescent current 3	I _{CC} 3 _{OQ}	V _{S/S} = 0 V			30	μΑ	
[Output]							
Upper saturation voltage 1	V _{OU} 1	$I_{O} = -0.5 \text{ A}, V_{CC}1 = 5 \text{ V}, V_{CC}2 = V_{CC}3 = 12 \text{ V}$		0.8	1.3	V	
Lower saturation voltage 1	V _{OD} 1	$I_{O} = 0.5 \text{ A}, V_{CC}1 = 5 \text{ V}, V_{CC}2 = V_{CC}3 = 12 \text{ V}$		0.3	0.5	V	
Upper saturation voltage 2	V _{OU} 2	$I_{O} = -0.5 \text{ A}, V_{CC}1 = V_{CC}3 = 5 \text{ V}, V_{CC}2 = 12 \text{ V}$		0.3	0.5	V	
Lower saturation voltage 2	V _{OD} 2	I _O = 0.5 A, V _{CC} 1 = V _{CC} 3 = 5 V, V _{CC} 2 = 12 V		0.3	0.5	V	
Current limiter setting voltage	VCL	RRF = 0.43Ω	0.25	0.32	0.4	V	
[Hall Amplifier]	•		•	•	•	•	
Hall amplifier common-mode input voltage range	VH _{COM}		1.2		V _{CC} 1 -1.0	V	
Hall amplifier input bias current	IH _{IB}			1	2	μΑ	
Minimum Hall input level	VH _{IN}		60			mVp-p	
[S/S pin]			_				
High-level voltage	V _{S/SH}		2.0		V _{CC} 1	V	
Low-level voltage	V _{S/SL}				0.7	V	
Input current	I _{S/SI}	V _{S/S} = 5 V			200	μΑ	
LEAK current	I _{S/SL}	V _{S/S} = 0 V	-30			μΑ	
[Control stage]	1					•	
VC pin input current	I _{VC}	$VC = VC_{REF} = 2.5 V$		1	3	μΑ	
VC _{REF} pin input current	I _{VCREF}	$VC = VC_{REF} = 2.5 V$		1	3	μΑ	
Voltage gain	VG _{CO}	ΔVRF/ΔVC	0.2	0.25	0.3	Times	
Rising threshold voltage	VC _{TH}	VC _{REF} = 2.5 V	2.35		2.65	V	
Rising threshold voltage width	Δ VC _{TH}	VC _{REF} = 2.5 V	50		150	mV	
[Hall supply]	•		•	•	•	•	
Hall supply voltage	V _H	I _H = 5 mA		1.0	1.6	V	
Allowable current	I _H		20			mA	
[Thermal shutdown]			'			•	
Operating temperature	T _{TSD}	*D	150	180	210	°C	
Hysteresis	ΔT_{TSD}	*D		15		°C	
[Hall comparator]							
Input offset voltage	V _{HCI} offset				10	mV	
Input hysteresis	V _{HCI} hys		3	8	15	mV	
Output ON voltage	V _{OU}				0.3	V	
Output OFF voltage	V _{OD}	Note	4.7			V	
Output current (sink)	I _{SINK}		3			mA	

Note: When in S/S OFF (standby) state, the Hall comparator goes high.

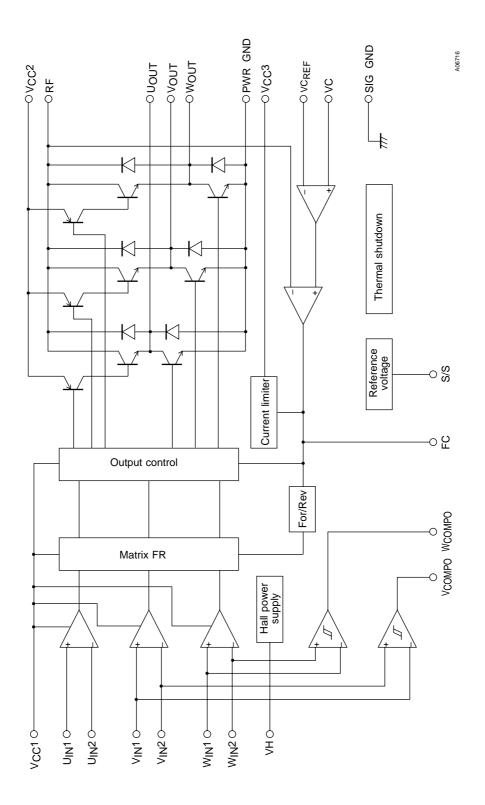
^{*}D stands for design target; this value is not measured.

Truth Table


$Source \to sink$			Input	Control		
	Source → Sirik	U	V	W	VC	
1	$W\;phase\toV\;phase$	Н	Н	L	Н	
'	$V \text{ phase} \to W \text{ phase}$	11			L	
2	W phase \rightarrow U phase	Н	L	L	Н	
2	$U\;phase\toW\;phase$	П			L	
3	$V \text{ phase} \to W \text{ phase}$		L	Н	Н	
3	$W\;phase\toV\;phase$	_			L	
4	$U\;phase\toV\;phase$	_	Н	L	Н	
4	$V \; phase \rightarrow U \; phase$	_			L	
5	$V \; phase \rightarrow U \; phase$	Н	L	Н	Н	
5	$U\;phase\toV\;phase$	11			L	
6	$U\;phase\toW\;phase$		Н	Н	Н	
	W phase \rightarrow U phase	L	17	17	L	

Inputs

H: For each phase input 2, phase input 1 is at a higher electric potential of 0.2 V or more.


L: For each phase input 2, phase input 1 is at a lower electric potential of 0.2 V or more.

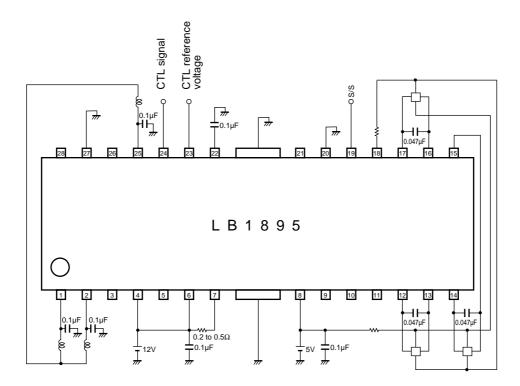
LB1895 Pin Assignment

Top view

LB1895 Block Diagram

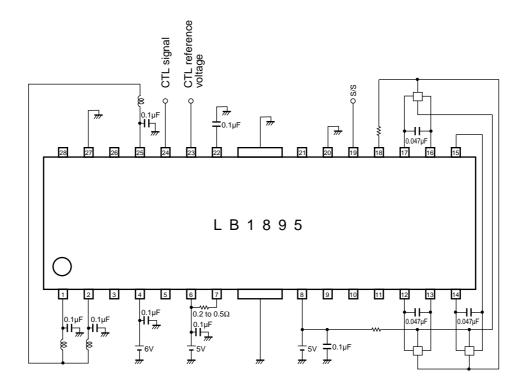
Pin Descriptions

Note: Numbers within () are for LB1895D


Pin No.	Symbol	Voltage	Equivalent circuit	Description
4	V _{CC} 2	4 V to 13.6 V		Supply pin that provides pre-drive voltage for the source side.
6 (5)	V _{CC} 3	2 V to 13.6 V		Supply pin that provides voltage for the constant current control amplifier.
8 (10)	V _{CC} 1	4 V to 6 V		Supply pin that provides voltage for all circuits except the output transistor, source-side pre-drive, and constant current control amplifier.
9 (11)	V _{СОМРО}		150μA	V-phase Hall element waveform Schmitt comparator output pin.
10 (12)	W _{COMPO}		A06717	W-phase Hall element waveform Schmitt comparator output pin.
12 (13)	U _{IN} 1	1.2 V to	VCC1 13 13 (14)	U-phase Hall element input pin. Logic HIGH is represented by U _{IN} 1 > U _{IN} 2.
13 (14)	U _{IN} 2	V _{CC} 1 –1 V	25µA	
14 (15)	V _{IN} 1		V _C C1	V-phase Hall element input pin, and V-phase Schmitt comparator input pin for reverse detection.
15 (16)	V _{IN} 2	1.2 V to	Logic HIGH is re V _{IN} 1 > V _{IN} 2.	Logic HIGH is represented by V _{IN} 1 > V _{IN} 2.
16 (17)	W _{IN} 1	V _{CC} 1 –1 V	(15) Δ (16) (18) (18)	W-phase Hall element input pin, and W-phase Schmitt comparator input pin for reverse detection.
17 (18)	W _{IN} 2		ਜਾ ਜਾ ਜਾ ਜਾ A06719	Logic HIGH is represented by W _{IN} 1 > W _{IN} 2.
18 (19)	VH		75μΑ (19) 30kΩ 2kΩ (19) Α06720	This pin provides the lower bias voltage for the Hall element.

Continued on next page.

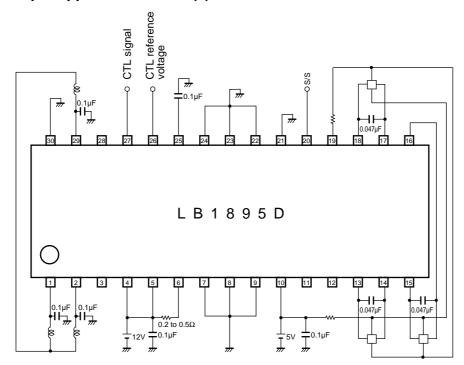
Continued from preceding page.


Pin No.	Symbol	Voltage	Equivalent circuit	Description
19 (20)	S/S	0 V to V _{CC} 1	VCC1 19 75kΩ 50kΩ M A06721	None of the circuits operate if the voltage on this pin is 0.7 V or less, or if this pin is open. When driving the motor, the voltage on this pin must be 2 V or more.
20 (21)	SIG GND			Ground connection for all circuits except the outputs.
22 (25)	FC		VCC1 22 (25) 20kΩ ₹5kΩ A06722	Control loop frequency characteristics compensation pin. Connect a capacitor between this pin and GND to stop closed loop oscillation in the current control system.
23 (26)	VC _{REF}	2 V to 3 V	V _{CC1}	Control reference voltage application pin. This voltage determines the control start voltage.
24 (27)	VC	0 V toV _{CC} 1	100µА 100µA	Speed control voltage application pin. V-type control, where: VC > VC _{REF} = forward and VC < VC _{REF} = reverse
25 (29)	W _{OUT}			W-phase output pin.
27 (30)	PWR GND		7)(6)	Output transistor ground.
1	V _{OUT}		<u> </u>	V-phase output pin.
2	U _{OUT}		25(1)2	U-phase output pin.
7 (6)	RF		(29) (27) (30)	Upper output NPN transistor collector pin (three-phase common). Connect a resistor between V _{CC} 3 and the RF pin for current detection. When this voltage is detected, the constant current control and current limiter circuits function.

LB1895 Sample Application Circuit (1)

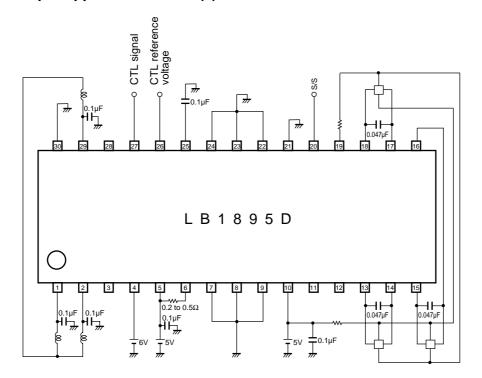
A06725

LB1895 Sample Application Circuit (2)


A06726

Between power supply and GND, Output and GND, and between Hall inputs:

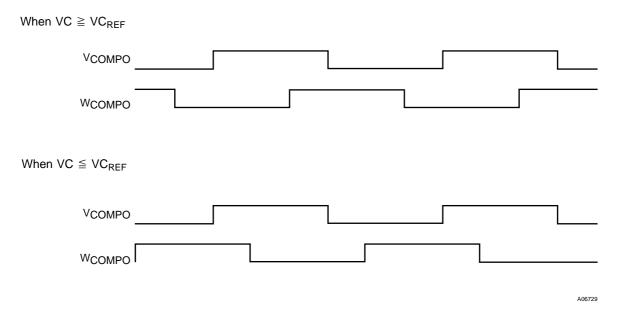
The capacitors may change, depending on the motor.


The capacitor between the Hall inputs in particular may not be required with some motors.

LB1895D Sample Application Circuit (1)

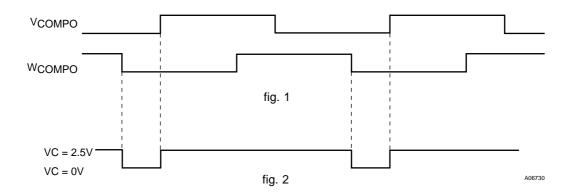
A06727

LB1895D Sample Application Circuit (2)


Between power supply and GND, Output and GND, and between Hall inputs:

The capacitors may change, depending on the motor.

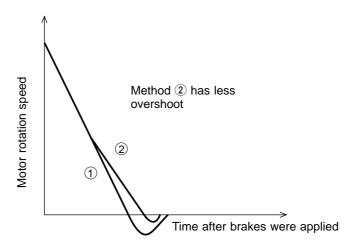
The capacitor between the Hall inputs in particular may not be required with some motors.


A06728

LB1895,1895D — Example of using a comparator to detect the direction of rotation

When the phasing is as shown above, the direction of rotation is determined to be

- Reverse full braking method
 Braking is applied with VC = L until reverse rotation is detected. The moment that reverse rotation is detected, the driving power is turned off or a short pulse is input.
- 2) Intermittent braking method


If braking is applied according to the value obtained by OR logic in V_{COMPO} and W_{COMPO} together, for example, reverse braking is applied according to the following timing.

As a result, when the rotation speed is fast, braking is applied many times; at slower speeds, braking is applied fewer times. Furthermore, if the V_{COMPO} and W_{COMPO} logic combination is changed, the duty of $VC = 0 \ V - 2.5 \ V$ also changes.

[&]quot;forward" if W_{COMPO} is low at the rising edge of V_{COMPO}, and

[&]quot;reverse" if W_{COMPO} is high at the rising edge of V_{COMPO} .

The following graph illustrates the change in the rotation speed after braking is applied under methods 1 and 2 described above.

A06731

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1997. Specifications and information herein are subject to change without notice.