IC for Multifunction Telephones

Monolithic IC LAG639

Outline

This IC was developed for use in home-use telephone and small-scale telephone systems, and incorporates data transmission functions (AMI).

Features

1. Incorporates efficient switching regulator with broad input voltage range

Vout 5V±0.25 IL 250mA (13~45V)

VIN 15~45V

2. Internal data transmission/reception circuits

Data can be superposed on the power supply line for transmission.

AMI format is used for transmission route coding.

3. Internal system reset circuit

5V line abnormal voltage detection circuit

Watchdog timer reset circuit

4. Internal speaker amp

260 mW typ. at 8Ω load

Mute pin

5. Internal beep sound generator circuit

With pin to vary audio volume (also used to turn beep sound on and off)

Package

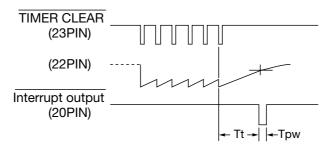
SDIP-30A (LAG639D)

Absolute Maximum Ratings (Ta=25°C)

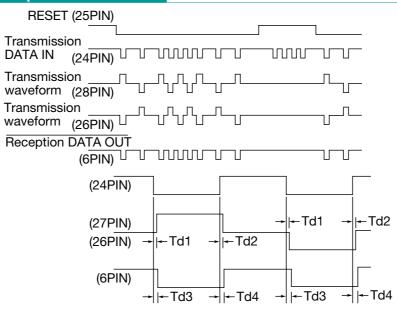
Item	Symbol	Ratings	Units	
Operating temperature	Topr	-20~+70	$^{\circ}$ C	
Storage tempereture	Tstg	-40~+125	$^{\circ}\!\mathrm{C}$	
Power supply voltage	Vcc max.	46	V	
Allowable loss	Pd	750	mW	

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=30V)

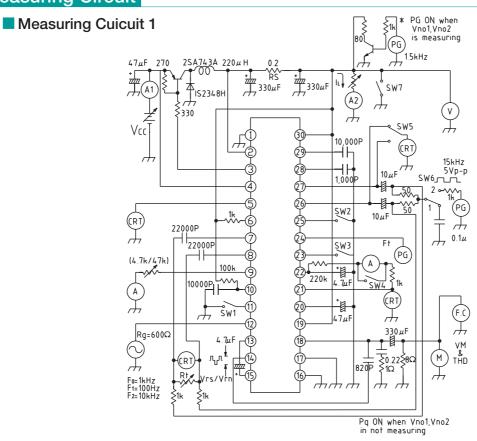
Item	Symbol	Measurement circuit	Measurement conditions	Min.	Тур.	Max.	Units
SWR unit							
Output voltage	Vo1	1	Vcc=15~45V	4.75	5.00	5.25	V
Output voltage			IL=0~250mA	4.73			
Output voltage	Vo2	1	Vcc=13~45V	4.70	5.00	5.25	V
Output voltage	V 02	1	$I_L=0\sim200mA$	4.70			
Output ripple voltage	Vr	1	IL=250mA			50	mV _{P-P}
Reactive current	Loog	1	IL=0mA		6	10	mA
neactive current	rent Iccq 1		Amp & reception off		О	10	IIIA
SWR transmission frequency	Fosc	1			80		kHz
Output current on short-circuit	Ios	1	Rs=0.2Ω	70	110	150	mA
Power supply voltage detection	on unit					•	
Detection voltage	Vs	2	*	4.30	4.50	4.80	V
Detection drop voltage	∠Vs	2	∠ Vs=Vo-Vs	0.2			V
Output current while on	IRon	2	Vo=4V	10	20		mA
Leakage output current while off	IRoff	2	Vo=5.25V			1	μA

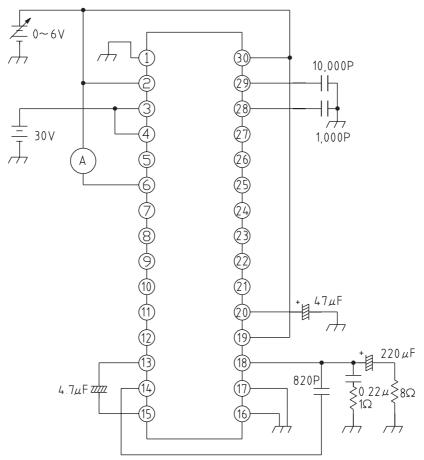

Note: The asterisk (*) indicates that the power supply voltage detection unit characteristics are standards in the transient power on/off states. However, for convenience the detection voltage is taken to be the value of V₀ when V₀ in measurement circuit 2 is varied and the pin 6 output state is switched from off to on.

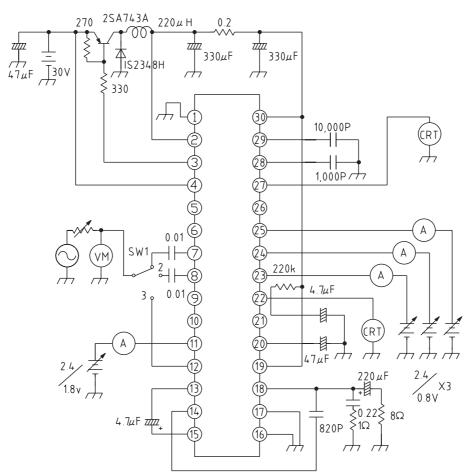
Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=30V Faudio=1kHz)


Item	Symbol	Measurement circuit	Measurement conditions	Min.	Тур.	Max.	Units
Power amp unit							
Amp gain	Gv	1	Voa=0.775Vrms	35	38	41	dB
Maximum distortion-free output	Po max.	1	THD=10%	150	260		mV
Distortion	THD	1	Po=100mW			2	%
Attanuation at 100 Hz	GF1/GF0	1	Fo=1kHz, Fl=100Hz		-14		dB
Attenuation at 100 Hz	GF1/GF0 1		Voa=0.775Vrms		-14		uD
Attenuation at 10 Hz	GF2/GF0	1	F2=10 kHz, above conditions		-8		dB
Input IMP1	R _{IN} 1	3	Mute off	10	15		kΩ
Input IMP2	Rin2	3	Mute on	2.5	3.5		kΩ
			Mute on				
Residual noise 1	Vno1	1	AUDIO IN 20mVrms			0.5	mVrms
			IL=10 70mA 1.5kHz			0.5	IIIVIIIIS
			Transmission unit ON Ft=1kHz				
			Mute off				
Residual noise 2	Vno2	1	AUDIO OFF			1.2	mVrms
			IL=10 70mA 1.5kHz			1.2	IIIVIIIS
			Transmission unit ON Ft=1kHz				

lk	0	Measurement	Management and distance	N.A.	T	N.4	11:4
Item	Symbol	circuit	Measurement conditions	Min.	Тур.	wax.	Units
Beep sound generator unit							
Beep sound frequency	Fb	1		0.85	1.0	1.15	kHz
Beep off switching point	Ibsw	1	Pin 9 input current	20	35	48	μA
Beep sound output 1	Vob1	1	Pin 9 connected to GND through 4.7k Amp output voltage		1.4	1.8	Vrms
Beep sound output 2	Vob2	1	Pin 9 connected to GND through 47k	0.11	0.16	0.22	Vrms
Watchdog timer unit							
Timer time	Tt	1	cf. watchdog timer waveform diagram	0.8	1.0	1.2	S
Output pulse width	Tpw	1	cf. watchdog timer waveform diagram T=beep sound period	0.45 (1/2T)		1.1 (1T)	mS
Output voltage while on	Vwon	1				0.5	V
Leakage output current while off	Iwoff	1				1	μA
Transmission circuit unit							
Transmission output voltage	Vto	1	Both pins 27 and 28	3.8	4.2	4.6	V _{P-P}
Transmission waveform symmetry	Vtr	1	Vt1/Vt2	0.75	1	1.25	
Reception sensitivity	Vrs	1		1.0	1.2	1.5	V _{P-P}
Noise resistance	Vrn	1	Level at which no errors are output	0.8			V _{P-P}
Input IMP	R _{IN} 3	3	Both pins 7 and 8	25	36	46	kΩ
Transmission delay time	Td1	1	cf. transmit/receive waveform diagrams		0.5		μS
Transmission delay time	Td2	1	cf. transmit/receive waveform diagrams		0.4		μS
Transmission delay time	Td3	1	cf. transmit/receive waveform diagrams		1.2		μS
Transmission delay time	Td4	1	cf. transmit/receive waveform diagrams		1.5		μS
Reception output H voltage	VroH	1		4			V
Reception output L voltage	VroL	1				0.5	V
Transmission waveform LOSS 1	Vtloss1	1	Vt=5V applied, power on	4.5			V _{P-P}
Transmission waveform LOSS 2	Vtloss2	1	Vt=5V applied, power off	4.5			V _{P-P}
General logic unit characteris	tics						
H level input voltage	ViH	3		2.4			V
L level input voltage	ViL	3				0.8	V
H level input current	IiH	3	$V_{IN}=2.4V$			10	μA
L level input current	IiL	3	$V_{\rm IN}$ =0.4 V			-300	μA

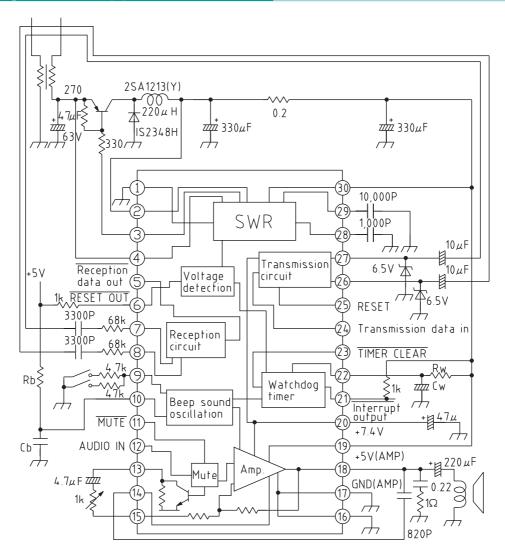

Watchdog timer waveform


Transmission/Reception waveform


Measuring Circuit

■ Measuring Cuicuit 2

■ Measuring Cuicuit 3



Switch Operation (Measurement circuit 1)

Measurement item	SW1	SW2	SW3	SW4	SW5	SW6	Other conditions
Vo1, Vo2	0	×	X	0	_	1	
Vr	0	×	×	0	_	1	No spike noise
Iccq	0	×	×	0	_	1	A1 only
los	0	×	×	0	_	1	A2 only
Gv, Po max., THD							THD measured after passing
GF1/GF0, GF2/GF0	×	×	×		_	1	through 400Hz-15kHz BPF
Vno1	0	0	×	0	_	1	Using 400Hz-15kHz BPF
Vno2	×	0	×	0	_	1	Using 400Hz-15kHz BPF
Fb, IbSW, Vob1, Vob2	0	×	×	0	_	1	
	_	_	×	0	_	1	cf. watchdog timer
Tt, T _{PW} , Vwon			↓				waveform diagram
			0				waveloriii diagram
Iwoff	_	_	×	×	_	1	
Vto, Vtr	0	0	×	0	*	1	SW5-1, 2 measured
Vrs, Vrn	0	0	×	0	_	1	Measured with Rt adjusted
Td, VroH, VroL						1	cf. transmit/receive
IG, VIOII, VIOL			×		_	1	waveform diagrams
Vtloss 1	0	×	×	0	*	2	With power on, SW5-1, 2 measured
Vtloss 2	0	×	×	0	*	2	With power on, SW5-1, 2 measured

Note: Circles and X's mean the switch display should be on and off respectively; dashes (–) mean either state is allowed.

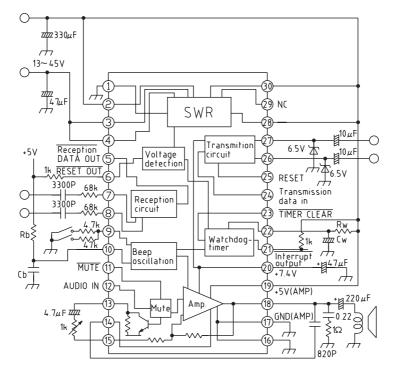
Block Diagram and Application Circuits

1. The watchdog timer time is determined by the values of Rw and Cw.

Tt = Rw•Cw where Rw is 56kΩ to 560kΩ

Cw is between 0.01µF and 10µF

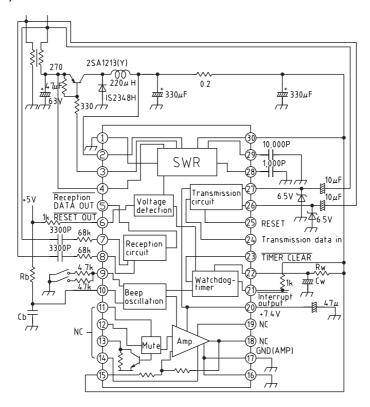
2. The beep sound frequency is determined by Rb and Cb.


Fb = 1/Rb•Cb where Rb is 56 k Ω to 330k Ω

Cb is between 4700PF and 22,000PF.

- 3. The beep sound volume can be varied through the resistance connected to pin 10. At $4.7k\Omega$ the voltage is approx. $4V_{P-P}$, and at $47k\Omega$ it is about $0.4V_{P-P}$.
- 4. In overload protection operation the voltage across pins 1 to 30 is tested, with a limit of 100 \pm 20mV. On load shorting, the test voltage is dropped to about 1/4 to conserve power.

Additional application example 1


(SWR circuit not used)

Even when a 5V external voltage can be supplied, an addition voltage of 13 to 45V must be applied to pins 3 and 4 in order to obtain an internal biased power supply of 7.4V.

Additional application example 2

(Speaker amp not used)

In order to prevent abnormal oscillation of the amplification circuit, a 5V power supply must be connected to pin 15 to halt amplification functions.