

INTRODUCTION

The KA22261 is a monolithic intergrated circuit consisting of a dual equalizer amplifier with REC AMP, and it is suitable for stereo radio cassettes.

FEATURES

- Dual equalizer amplifier with ALC circuit.
 High open loop voltage gain : 78dB (Typ).
 Recording amplifier available because of high open loop voltage gain.
 Not necessary diode or transistor for ALC.
- Good channel separation : 60dB (Typ).
- · Good ALC response balance between channels.
- Wide operating supply voltage range : V_{CC} = 6V ~ 15V.

ORDERING INFORMATION

Device	Package	Operating Temperature
KA22261	16-DIP-300A	-20℃ ~+70℃

BLOCK DIAGRAM

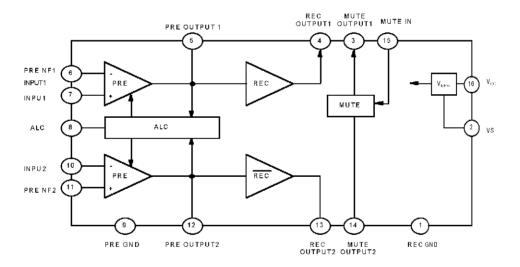


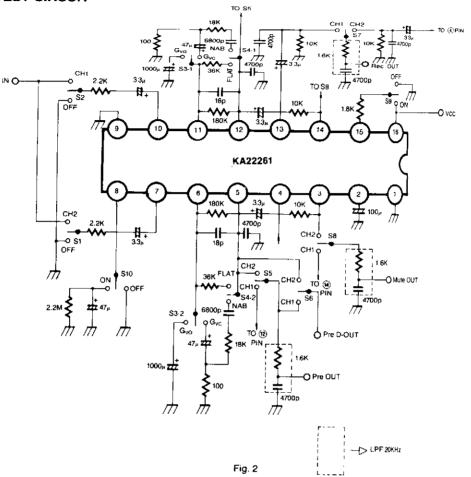
Fig 1.

ABSOLUTE MAXIMUM RATINGS (Ta = 25℃)

Characteristics	Symbol	Value	Unit	
Supply Voltage	V _{CC}	16	V	
Power Dissipation	P□	750	vv	
Operating Temperature	Tope	-20 ~ +70	℃	
Storage Temperature	T _{STG}	-40 ~ +150	°C	

ELECTRICAL CHARACTERISTICS

(Ta = 25% , V_{CC} = 9V, f = 1KHz, unless otherwise specified)


Characteristics		Symbol	Test Condition	Min	Тур	Max	Unit
Quiescent Circuit Current		Icca	V _I = 0		8.5	10.5	mA
	Open Loop Voltage Gain	G _{vo}	V₁ = -80dbm	65	78		dB
	Output Voltage	V ₀₁	THD = 1%	0.5	0.8		٧
PRE	Total Harmonic Distortion	THD₁	V ₀ = 0.2V		0.15	0.5	%
AMP	Output Noise Voltage	V _{NO}	R _G = 2.2KΩ, NAB		0.26	0.6	mW
			BW(-3dB) = 30Ha ~ 20KHz				
	Cross Talk	СТ	$R_G = 2.2K\Omega$	47	60		dB
	Closed Loop Voltage Gain	G _{VC}	$R_L = 10K\Omega$	12.7	14.7	16.7	dB
	Output Voltage	V ₀₂	THD = 1%	2.0	2.5		٧
REC	Total Harmonic Distortion	THD ₂	V _o = 1.5V		0.3	1.0	%
AMP	ALC Range (Note 1)	△V _{ALC}	V _I = -60dB, R _G = 2.2KΩ		45		dB
	ALC Distortion	THD _{ALC}	$V_1 = -20 dBm_1 R_G = 2.2 K\Omega_2$		0.3	1.0	٧
	ALC Voltage	VO _(ALC)	V _I = -20dBm, R _G = 2.2KΩ	0.9	1.1	1.42	%
Г	Muting Attenuation			45	55		dB
	ALC Balance	CB _{ALC}	V _I = -20dBm		0	2	dB

^{*}Note 1 : Input voltage range from $V_{\rm I}$ = -60dB to output voltage $V_{\rm O}$ = 3dB up.

Page: 2 (KA22261)

TEST CIRCUIT

APPLICATION CIRCUIT

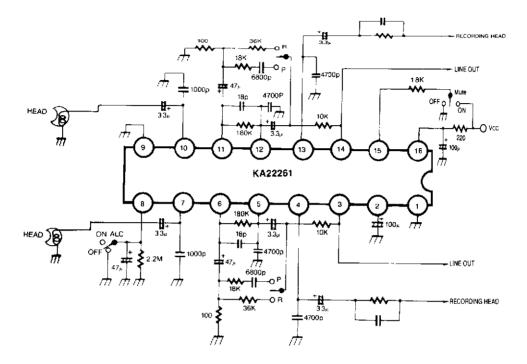
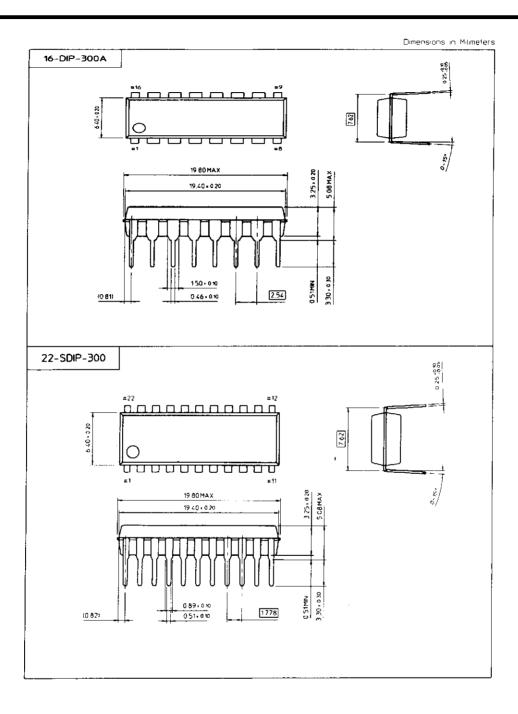



Fig. 3

