Ideal for voltage monitoring for industrial facilities and equipment.

- Monitor for overvoltages or undervoltages.
- Manual resetting and automatically resetting supported by one Relay.
- One SPDT output relay, 6 A at 250 VAC (resistive load).
- Output relay can be switched between normally open and normally closed.
- Process control signal (0 to 10 V) and current splitter input supported.
- Output status can be monitored using LED indicator.
- Input frequency of 40 to 500 Hz supported.
- Inputs are isolated from the power supply.

Refer to Safety Precautions for the K8AB
Series. Refer to page 9 for the Q\&A section.

Model Number Structure

Model Number Legend

1. Basic Model

K8AB: Measuring and Monitoring Relays
2. Functions

VS: \quad Single-phase Voltage Relay (One-sided operation)
3. Measuring Current

1: $\quad 6$ to $60 \mathrm{mV} \mathrm{AC/DC}, 10$ to $100 \mathrm{mV} \mathrm{AC/DC}, 30$ to $300 \mathrm{mV} \mathrm{AC/DC}$
2: $\quad 1$ to $10 \mathrm{~V} \mathrm{AC/DC}$,3 to $30 \mathrm{~V} \mathrm{AC/DC}, 15$ to 150 V AC/DC
3: $\quad 20$ to $200 \mathrm{~V} \mathrm{AC/DC}$,30 to $300 \mathrm{~V} \mathrm{AC/DC}$,60 to $600 \mathrm{~V} \mathrm{AC/DC}$
4. Supply Voltage

24 VAC/DC: 24 VAC/DC
100-115 VAC: 100 to 115 VAC
200-230 VAC: 200 to 230 VAC

Ordering Information

List of Models

Single-phase Voltage Relay	Measuring voltage	Supply voltage	Model
	6 to 60 mV AC/DC, 10 to 100 mV AC/DC, 30 to 300 mV AC/DC	24 VAC/DC	K8AB-VS1 24 VAC/DC
		100-115 VAC	K8AB-VS1 100-115 VAC
		200-230 VAC	K8AB-VS1 200-230 VAC
	1 to 10 V AC/DC, 3 to 30 V AC/DC, 15 to 150 V AC/DC	24 VAC/DC	K8AB-VS2 24 VAC/DC
		100-115 VAC	K8AB-VS2 100-115 VAC
		200-230 VAC	K8AB-VS2 200-230 VAC
	20 to 200 V AC/DC, 30 to 300 V AC/DC, 60 to 600 V AC/DC	24 VAC/DC	K8AB-VS3 24 VAC/DC
		100-115 VAC	K8AB-VS3 100-115 VAC
		200-230 VAC	K8AB-VS3 200-230 VAC

Shunts (Order Separately)

A shunt is a resistor to convert a DC current into a DC voltage.
Use the shunt in combination with K8AB-VS to detect undercurrent and overcurrent in DC circuits.

Model	Rated current	Output voltage
SDV-SH5	5 A	60 mV
SDV-SH7.5	7.5 A	
	7.5 A (for 100 mV)	100 mV
SDV-SH10	10 A	60 mV
SDV-SH15	15 A	
SDV-SH20	20 A	
SDV-SH30	30 A	
SDV-SH50	50 A	
SDV-SH75	75 A	
SDV-SH100	100 A	
SDV-SH150	150 A	
SDV-SH200	200 A	
SDV-SH300	300 A	
SDV-SH500	500 A	
SDV-SH750	750 A	
SDV-SH1000	1,000 A	

Characteristics
SDV-SH5 (Rated Current: 5 A)

Note: 1. All the above listed shunts have an accuracy in the 1.0 class.
2. Select a shunt whose rated current is more than 120% of the current normally flowing in a circuit. The characteristics of the shunt may change or fusing of a resistor element may occur if an overload that is $1,000 \%$ of the rated current is applied. Therefore, determine the rated current of the shunt to be used, by taking the circuit conditions into account.

Ratings and Specifications

Input Range

Model	Range*	Connection terminal	Measuring voltage	Input impedance	Overload capacity Continuous input: 115% of maximum input 10 s max.: 125% of maximum input
K8AB-VS1	0 to $60 \mathrm{mV} \mathrm{AC/DC}$	V1-COM	6 to 60 mV AC/DC, 10 to 100 mV AC/DC, 30 to 300 mV AC/DC	Approx. $220 \mathrm{k} \Omega$	Continuous input: 115% of maximum input 10 s max.: 125% of maximum input
	0 to $100 \mathrm{mV} \mathrm{AC/DC}$	V2-COM		Approx. $230 \mathrm{k} \Omega$	
	0 to $300 \mathrm{mV} \mathrm{AC/DC}$	V3-COM		Approx. $260 \mathrm{k} \Omega$	
K8AB-VS2	0 to $10 \mathrm{~V} \mathrm{AC/DC}$	V1-COM	1 to 10 V AC/DC, 3 to 30 V AC/DC, 15 to 150 V AC/DC	Approx. $120 \mathrm{k} \Omega$	
	0 to $30 \mathrm{~V} \mathrm{AC/DC}$	V2-COM		Approx. $320 \mathrm{k} \Omega$	
	0 to 150 V AC/DC	V3-COM		Approx. 1.6 M	
K8AB-VS3	0 to $200 \mathrm{~V} \mathrm{AC/DC}$	V1-COM	20 to 200 V AC/DC, 30 to 300 V AC/DC, 60 to 600 V AC/DC	Approx. 1.2 M	
	0 to $300 \mathrm{~V} \mathrm{AC/DC}$	V2-COM		Approx. 1.7 M	
	0 to 600 V AC/DC	V3-COM		Approx. $3.1 \mathrm{M} \Omega$	

[^0]Ratings

Power supply voltage	Isolated power supply	24 VDC, 24 VAC, 100 to 115 VAC, 200 to 230 VAC
Power consumption		24 VDC: 1 W max. 24 VAC: 4 VA max. 100 to 115 VAC: 4 VA max. 200 to 230 VAC: 5 VA max.
Operating value setting range (SV)		10\% to 100% of maximum measuring voltage K8AB-VS1: 6 to $60 \mathrm{mV} \mathrm{AC/DC}$ 10 to $100 \mathrm{mV} \mathrm{AC/DC}$ 30 to $300 \mathrm{mV} \mathrm{AC/DC}$ K8AB-VS2: 1 to $10 \mathrm{VAC} / \mathrm{DC}$ 3 to $30 \mathrm{VAC} / \mathrm{DC}$ 15 to $150 \mathrm{~V} \mathrm{AC/DC}$ K8AB-VS3: 20 to $200 \mathrm{VAC/DC}$ 30 to $300 \mathrm{~V} \mathrm{AC/DC}$ 60 to $600 \mathrm{~V} \mathrm{AC/DC}$
Operating value		100\% operation at set value
Reset value setting range (HYS.)		5% to 50% of operating value
Reset method		Manual reset/automatic reset (switchable) Note: Manual reset: Turn OFF power supply for 1 s or longer.
Operating time setting range (T)		0.1 to 30 s
Power ON lock time (LOCK)		1 s or 5 s (Switched using DIP switch.)
Indicators		Power (PWR): Green, Relay output (RY): Yellow, Alarm outputs (ALM): Red
Input impedance		Refer to "Input Range" on previous page.
Output relays		One SPDT relay (NO/NC switched using DIP switch.)
Output relay ratings		
Ambient operating temperature		-20 to $60^{\circ} \mathrm{C}$ (with no condensation or icing)
Storage temp		-40 to $70^{\circ} \mathrm{C}$ (with no condensation or icing)
Ambient operating humidity		25\% to 85\% (with no condensation)
Storage humid		25\% to 85\% (with no condensation)
Altitude		2,000 m max.
Terminal screw	ghtening torque	$0.49 \mathrm{~N} \cdot \mathrm{~m}$
Terminal wiring method		Recommended wire Solid wire: $\quad 2.5 \mathrm{~mm}^{2}$ Twisted wires: AWG16, AWG18 Note: 1. Ferrules with insulating sleeves must be used with twisted wires. 2. Two wires can be twisted together. Recommended ferrules Al 1,5-8BK (for AWG16) manufactured by Phoenix Contact Al 1-8RD (for AWG18) manufactured by Phoenix Contact AI 0,75-8GY (for AWG18) manufactured by Phoenix Contact
Case color		Munsell 5Y8/1
Case material		PBT/ABS resin (self-extinguishing resin) UL94-V0
Weight		Approx. 130 g
Mounting		Mounted to DIN Track or via M4 screws (tightening torque: 1.2 N.m)
Dimensions		22.5 (W) $\times 90$ (H) $\times 100$ (D) mm

Specifications

Allowable power supply voltage range		85\% to 110% of power supply voltage
Allowable power supply frequency range		$50 / 60 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$
Input frequency range		DC input or AC input (40 to 500 Hz)
Overload capacity		Continuous input: 115% of maximum input, 10 s max.: 125% of maximum input
Setting error	Operating value	Set value $\pm 10 \%$ full scale
	Reset value	
	Operating time	
	Power ON lock time	Set value $\pm 0.5 \mathrm{~s}$
Repeat error	Operating value	```Operating value }\pm2 Error calculation: Error = ((Maximum operating value - Minimum operating value (over 10 operations))/2)/ Average value }\times100```
	Reset value	Reset value $\pm 2 \%$ Error calculation: Error $=(($ Maximum reset value - Minimum reset value (over 10 resets $) / 2) /$ Average value $\times 100 \%$
	Operating time	Operating time repeat error: $\pm 50 \mathrm{~ms}$ Overvoltage: Measured when input suddenly changes from 0% to 120% of setting. Undervoltage: Measured when input suddenly changes from 120% to 0% of setting.
	Power ON lock time	Power ON lock time repeat error: $\pm 0.5 \mathrm{~s}$ (The operating time when the operating time is set to the minimum value and the power supply suddenly changes from 0\% to 100\%.)
Temperature influence		Operating value Drift based on measured value at standard temperature: $-20^{\circ} \mathrm{C}$ to standard temperature: $\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. Standard temperature to $60^{\circ} \mathrm{C}: \pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. (Humidity: 25% to 80%) Operating time Fluctuation based on measured value at standard temperature: $-20^{\circ} \mathrm{C}$ to standard temperature: $\pm 10 \%$ max. Standard temperature to $60^{\circ} \mathrm{C}$: $\pm 10 \%$ max. (Humidity: 25% to 80%)
Humidity influence		Operating value Based on ambient humidity of 65% 25% to 80% : $\pm 5 \%$ max. Operating time Based on ambient room humidity 25% to 80% : $\pm 10 \%$ max.
Influence of power supply voltage		Operating value: $\pm 5 \%$ max. Operating time: $\pm 10 \%$ max. Note: The error in the operating value and operating time under standard conditions.
Influence of power supply frequency		Operating value: $\pm 5 \%$ max. (at 45 to 65 Hz) Operating time: $\pm 10 \%$ max. (at 45 to 65 Hz) Note: The error in the operating value and operating time under standard conditions.
Influence of input frequency		At 40 to 500 Hz Operating value $\pm 5 \%$ max. Operating time $\pm 10 \%$ max. Note: The error in the operating value and operating time under standard conditions.
Applicable standards	Conforming standards	EN60255-5 and EN60255-6 Installation environment (Pollution Degree 2, Overvoltage Category III)
	EMC	EN61326
	Safety standards	UL508
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. Between external terminals and case Between power supply terminals and input terminals (excluding models with DC power supply) Between power supply terminals and output terminals Between input terminals and output terminals
Dielectric strength		2,000 VAC for one minute Between external terminals and case Between power supply terminals and input terminals (excluding models with DC power supply) Between power supply terminals and output terminals Between input terminals and output terminals
Noise immunity		$1,500 \mathrm{~V}$ power supply terminal common/normal mode Square-wave noise of $\pm 1 \mu \mathrm{~s} / 100$ ns pulse width with 1 -ns rise time
Vibration resistance		Frequency 10 to $55 \mathrm{~Hz}, 0.35-\mathrm{mm}$ single amplitude, acceleration $50 \mathrm{~m} / \mathrm{s}^{2}$ 10 sweeps of 5 min each in X, Y, and Z directions
Shock resistance		$100 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in 6 directions along three axes (up/down, left/right, forward/backward)
Degree of protection		Terminal section: Finger protection

Connections

Wiring Diagram

Overvoltage Operation Diagram (Output Relay Drive Method: Normally Closed)

DIP switch setting: SW3 ON.

Note: The power ON lock prevents unnecessary alarms from being generated during the instable period when the power is first turned on. There is no relay output during timer instable pe
operation.

Undervoltage Operation Diagram

 (Output Relay Drive Method: Normally Open)DIP switch setting: SW3 OFF.

Note: The power ON lock prevents unnecessary alarms from being generated during the instable period when the power is first turned on. There is no relay output during timer operation.

Note: There is no polarity when a DC current input is used.

Front

Indicators

Item	Meaning
Power indicator (PWR: Green)	Lit when power is being supplied.
Relay status indicator (RY: Yellow)	Lit when relay is operating
Alarm indicator (ALM: Red)	Lit when there is an overvoltage or undervoltage. The indicator flashes to indicate the error status after the input has exceeded the threshold value while the operating time is being clocked.

Setting Knobs

Item	Usage
Voltage knob (SV)	Used to set the voltage to 10\% to 100\% of maximum measuring voltage.
Hysteresis knob (HYS.)	Used to set the rest value to 5\% to 50\% of the operating value.
Operating time knob (T)	Used to set the operating time to 0.1 to 30 s.

Note: 1. Use either a solid wire of $2.5 \mathrm{~mm}^{2}$ maximum or a ferrule with insulating sleeve for the terminal connection. The length of the exposed current-carrying part inserted into the terminal must be 8 mm or less to maintain dielectric strength after connection.

Recommended ferrules
Phoenix Contact

- Al 1,5-8BK (for AWG16)
- Al 1-8RD (for AWG18)
- AI 0,75-8GY (for AWG18)

2. Tightening torque

Recommended: $0.49 \mathrm{~N} \cdot \mathrm{~m}$
Maximum: $0.54 \mathrm{~N} \cdot \mathrm{~m}$

Operation and Setting Methods

Setting Ranges and Wiring Connections

Model	Measuring current	Wiring connection
K8AB-VS1	6 to $60 \mathrm{mV} \mathrm{AC/DC}$	V1-COM
	10 to $100 \mathrm{mV} \mathrm{AC/DC}$	V2-COM
	30 to $300 \mathrm{mV} \mathrm{AC/DC}$	V3-COM
	1 to $10 \mathrm{~V} \mathrm{AC/DC}$	V1-COM
	3 to $30 \mathrm{~V} \mathrm{AC/DC}$	V2-COM
	15 to $150 \mathrm{~V} \mathrm{AC/DC}$	V3-COM
K8AB-VS3	20 to $200 \mathrm{~V} \mathrm{AC/DC}$	V1-COM
	30 to $300 \mathrm{~V} \mathrm{AC/DC}$	V2-COM
	60 to $600 \mathrm{~V} \mathrm{AC/DC}$	V3-COM

Connections

1. Input

Connect the input between terminals V1-COM, V2-COM, or V3-COM, depending on the input voltage.
Malfunctions may occur if the input is connected to unused terminals and the Unit will not operate correctly
2. Power Supply

Connect the power supply to terminals A1 and A2.
3. Outputs

SPDT relays are output to terminals 11, 12, and 14.
Note: Use the recommended ferrules if using twisted wires.

DIP Switch Settings

The power ON lock time, resetting method, relay drive method, and operating mode are set using the DIP switch located on the bottom of the Unit.

DIP Switch Functions

SWITCH	$\text { ON } \bullet \uparrow$ OFF \qquad			$\begin{gathered} 2 \\ \square \\ \square \end{gathered}$	1 \square
Power ON lock time	5 s	---	---	---	-
	1 s	---	---	---	\bigcirc
Resetting method	Automatic reset	---	---	\bigcirc	---
	Manual reset	---	---	\bigcirc	---
Relay drive method	Normally closed	---	\bigcirc	---	---
	Normally open	---	\bigcirc	---	---
Operating mode	Undervoltage	\bigcirc	---	---	---
	Overvoltage	\bigcirc	---	---	---

Note: All pins are set to OFF at the factory.

Setting Method

1. Setting Voltage

The voltage knob (SV) is used to set the voltage.
The voltage can be set to 10% to 100% of the maximum measuring voltage.
Turn the knob while there is an input to the input terminals until the alarm indicator flashes (when the set value and the input have reached the same level.)
Use this as a guide to set the voltage.
The maximum measuring voltage will differ depending on the model and the input terminal.
Example: K8AB-VS3 Using Input Terminal V3-COM
The maximum measuring voltage will be 600 VAC/VDC and the setting range will be 60 to 600 V .
2. Hysteresis

Hysteresis is set using the hysteresis knob (HYS.)
The setting range is 5 to 50% of the operating value.
Turn the knob while there is an input to the input terminals until the alarm indicator flashes (when the setting and the input have reached the same level.)
Use this as a guide to set the hysteresis.
Example: Maximum Setting of 600 VAC/VDC, Voltage Setting (SV) of 50%, and Overvoltage Operation Operation will be at 300 V and resetting at 270 V when the hysteresis (HYS.) is set to 10%.
3. Operating Time

The operating time is set using the operating time knob (T).
The operating time can be set to between 0.1 and 30 s .
Turn the knob while there is an input to the input terminals until the alarm indicator flashes (when the set value and the input have reached the same level.)
Use this as a guide to set the operating time.
If the input voltage exceeds (or drops lower than) the voltage setting, the alarm indicator will start flashing for the set period and then stay lit.

Dimensions

Single-phase Voltage Relays

K8AB-VS1
K8AB-VS2
K8AB-VS3

Shunts

SDV-SH5 to SDV-SH50 (60-mV Rating)

Current terminal: M6 screw Voltage terminal: M4 screw

SDV-SH75 to SDV-SH200 (60-mV Rating)

Current terminal: M8 screw Voltage terminal: M4 screw

Model	A	B	C	D	E	F	G
SDV-SH75	140	120	25	10.5	6	18	36
SDV-SH100	140	120	25	10.5	6	18	36
SDV-SH150	140	120	25	10.5	6	18	43
SDV-SH200	140	120	25	10.5	6	18	43

SDV-SH300/-SH500 (60-mV Rating)

Current terminal: M10 screw (SDV-SH300), M12 screw (SDV-SH500)
Voltage terminal: M4 screw

Model	A	B	C	D	E	Resistor
SDV-SH300	130	30	110	4	36	4
SDV-SH500	160	40	120	6	41	5

Note: Inquire about models with a rated current of 1,500 A or larger.

SDV-SH750/-SH1000 (60-mV Rating)

Model	A	B	C	D	E
SDV-SH750	175	45	130	15	30
SDV-SH1000	175	60	135	18	30

Current terminal: M12 screw
Voltage terminal: M5 screw

都

Questions and Answers

Q Checking Operation

A
Overvoltages
Gradually increase the input from 80% of the setting. The input will equal the operating value when the input exceeds the setting and the alarm indicator starts flashing. Operation can be checked by the relay outputs that will start after the operating time has passed.
Undervoltage
Gradually decrease the input from 120% of the setting and check the operation using the same method as for overvoltage.
Example: Overvoltage Operating Mode and an Operating Time of 5 s
Note: K8AB-VS \square output relays are normally operative.

Connection Diagram

Q How to Measure the Operating Time

A Overvoltage
Change the input suddenly from 0% to 120% of the set value and measure the time until the Unit operates. Undervoltage
Change the input suddenly from 120% to 0% of the set value and measure the time until the Unit operates.

Q Operating Adjustment Knobs

A Use a screwdriver to turn the knobs. There is a stopper to prevent the knob from turning any further once it has been turned completely to the left or right. Do not force the knob past these limits.

Q Detecting Current with a Current Splitter

A An example of detecting an overload is shown below.
Example: Overload detection in a distribution switch board installed in a power substation.

[^1]
Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

[^0]: * The range is selected using connected terminals.

[^1]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

