AUTOMOTIVE RELAY

mm inch

FEATURES

- Small size

The smallest double make type relay $12.0(\mathrm{~W}) \times 15.5(\mathrm{~L}) \times 13.9(\mathrm{H}) \mathrm{mm}$ $.472(\mathrm{~W}) \times .610(\mathrm{~L}) \times .547(\mathrm{H})$ inch

- Pattern design simplification Simplified pattern design is possible because, while double make construction is employed, the external COM terminal is single.
- Standard terminal pitch employed The terminal array used is identical to that used in JJM relays(1c type).
- Plastic sealed type

Plastically sealed for automotive cleaning.

<Schematic>

SPECIFICATIONS

Contact

Arrangement		Double make contact
Contact material		Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6V DC 1A)		Typ. $10 \mathrm{~m} \Omega$
Contact voltage drop		Max. 0.25 V (at $2 \times 6 \mathrm{~A}$)
Rating	Nominal switching capacity	$\begin{gathered} 12 \mathrm{~A} 14 \mathrm{~V} \text { DC } \\ \text { (at } 2 \times 6 \mathrm{~A}, \text { lamp load) } \end{gathered}$
	Max. carrying current	$\begin{aligned} & 2 \times 6 \mathrm{~A}\left(12 \mathrm{~V} \text {, at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right), \\ & 2 \times 4 \mathrm{~A}\left(12 \mathrm{~V} \text {, at } 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}\right) \end{aligned}$
	Min. switching capacity ${ }^{\# 1}$	1A 12V DC
Expected life (min. operations)	Mechanical (at 120cpm)	Min. $10{ }^{7}$
	Electrical (lamp load)	Min. 105*1

Coil

Nominal operating power	$1,000 \mathrm{~mW}$

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

${ }^{*_{1}}$ At 12A 14V DC (lamp), operating frequency: 1s ON, 14s OFF
*2 Measurement at same location as "initial breakdown voltage" section.
${ }^{* 3}$ Detection current: 10 mA
*4 Excluding contact bounce time.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Time of vibration for each direction; X, Y direction: 2 hours Z direction: 4 hours

*9 Refer to " 6 . Usage, Storage and Transport Conditions" in AMBIENT
ENVIRONMENT section in Relay Technical Information.
Please inquire if you will be using the relay in a high temperature atmosphere ($110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$).

Characteristics

Max. operating speed (at nominal switching capacity)			4 cpm
Initial insulation resistance*2			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*3	Between open contacts		500 Vrms for 1min.
	Between contact and coil		500 Vrms for 1min.
Operate time*4 (at nominal voltage)(at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10 ms (Initial)
Release time (without diode)*4 (at nominal voltage)(at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10 ms (Initial)
Shock resistance		Functional*5	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*6	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functiona\|*7	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
		Destructive*8	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions in case of operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 5 g .176 oz

TYPICAL APPLICATIONS

Car alarm system flashing lamp etc.

ORDERING INFORMATION

Ex. JJM $\stackrel{2}{2 \mathrm{w}}$	Coil voltage (DC)
Contact arrangement	12 V
Double make contact	

JJ-M(2w)

TYPES AND COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance Ω	Nominal operating current, mA	Nominal operating power, mW	Usable voltage range, V DC
JJM2w-12V	12	Max. 6.9	Min. 1.0	$144 \pm 10 \%$	$83.3 \pm 10 \%$	1,000	10 to 16

DIMENSIONS(mm inch)

Download CAD Data from our Web site.

Schematic (Bottom view)

Dimension:
Max. 1mm . 039 inch:

Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

* Dimensions (thickness and width) of terminal in this catalog is measured before pre-soldering Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

REFERENCE DATA

1. Coil temperature rise

Sample: JJM2w-12V, 6pcs.
Point measured: Inside the coil
Contact carrying current: $2 \times 6 \mathrm{~A}, 2 \times 4 \mathrm{~A}$
Ambient temperature: Room temperature, $85^{\circ} \mathrm{C}$
$185{ }^{\circ} \mathrm{F}$

4. Distribution of operate time Sample: JJM2W-12V, 50pcs.

2. Ambient temperature and operating voltage range

3. Distribution of pick-up and drop-out voltage Sample: JJM2W-12V, 50pcs.

5. Distribution of release time

Sample: JJM2W-12V, 50pcs.

* Without diode

6. Electrical life test (Lamp load)

Sample: JJM2w-12V, 6pcs
Load: 5.5A, inrush 48A, $6 \times 21 \mathrm{~W}$
Operating frequency: (ON : OFF = 1s : 14s)
Ambient temperature: Room temperature

Circuit:

Load current waveform

Current value per contact on one side Inrush current: 48A, Steady current: 5.5A $10 \mathrm{~A}+$
,

200 ms

Change of pick-up and drop-out voltage

Change of contact resistance

For Cautions for Use, see Relay Technical Information.

