8-Bit Bidirectional Universal Shift Register with Parallel I/O High-Speed Silicon-Gate CMOS

The IN74AC299 is identical in pinout to the LS/ALS299, HC/HCT299. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

The IN74AC299 features a multiplexed parallel input/output data port to achieve full 8 -bit handling in a 20 pin package. Due to the large output drive capability and the 3 -state feature, this device is ideally suited for interface with bus lines in a bus-oriented system.

Two Mode-Select inputs and two Output Enable inputs are used to choose the mode of operation as listed in the Function Table. Synchronous parallel loading is accomplished by taking both ModeSelect lines, S_{1} and S_{2}, high. This places the outputs in the highimpedance state, which permits data applied to the data port to be clocked into the register. Reading out of the register can be accomplished when the outputs are enabled. The active-low asynchronous Reset overrides all other inputs.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A} ; 0.1 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- High Noise Immunity Characteristic of CMOS Devices
- Outputs Source/Sink 24 mA

PIN ASSIGNMENT

S1 1	20.7 Cc
OE1 ${ }^{\text {S }}$	19 s 2
OE2 [3	$18 \mathrm{~S} \mathrm{~S}_{\mathrm{H}}$
${ }^{{ }^{\text {G/ } / Q G ~}}$ [4	$17 \mathrm{QH}^{\prime}$
${ }^{\text {E L M Q }}$ [5	$16 \mathrm{PH} / \mathrm{QH}$
	$15 \mathrm{PF} / \mathrm{QF}$
${ }^{3}{ }^{\prime} / Q_{A}$	$14 . P_{D} / Q_{D}$
$Q_{\text {A }} \mathrm{C}^{\text {P }}$	$13 \mathrm{~PB} / \mathrm{Q}_{\mathrm{B}}$
२ESET 9	12.1 CLOCK
GND 10	11 SA

[^0]
MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IN }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Sink/Source Current, per Pin	± 50	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
+Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{J}	Junction Temperature (PDIP)		140	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High		-24	mA
I_{OL}	Output Current - Low		24	mA
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time *			
	(except Schmitt Inputs)	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	150
		$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	40
$\mathrm{~ns} / \mathrm{V}$				
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	0	25	

${ }^{*} \mathrm{~V}_{\text {IN }}$ from 30% to $70 \% \mathrm{~V}_{\mathrm{CC}}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\mathrm{OUT}}\right) \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

INTEGRAL

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
				$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	
V_{IH}	Minimum High-Level Input Voltage	$\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\mathrm{I}_{\text {OUT }} \leq-50 \mu \mathrm{~A}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IV}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\mathrm{I}_{\text {OUT }} \leq 50 \mu \mathrm{~A}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{IL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.1	± 1.0	$\mu \mathrm{A}$
I_{Oz}	Maximum ThreeState Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$	5.5	± 0.6	± 6.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OLD }}$	+Minimum Dynamic Output Current	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max	5.5		75	mA
$\mathrm{I}_{\text {OHD }}$	+Minimum Dynamic Output Current	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min	5.5		-75	mA
$\mathrm{I}_{\text {CC }}$	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	8.0	80	$\mu \mathrm{A}$

*All outputs loaded; thresholds on input associated with output under test.
+Maximum test duration 2.0 ms , one output loaded at a time.
Note: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V}_{\mathrm{CC}}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$,Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{*} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits				Unit
			$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 90 \\ 130 \end{gathered}$		$\begin{gathered} 80 \\ 105 \end{gathered}$		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Clock to $\mathrm{Q}_{\mathrm{A}}{ }^{\prime}$ or $\mathrm{Q}_{\mathrm{H}}{ }^{\prime}$ (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Clock to $\mathrm{Q}_{\mathrm{A}}{ }^{\prime}$ or $\mathrm{Q}_{\mathrm{H}}{ }^{\prime}$ (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.0 \\ & 16.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Clock to Q_{A} thru Q_{H} (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.5 \\ & 16.0 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Clock to Q_{A} thru Q_{H} (Figure 1)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 6.5 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 23.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.5 \\ & 17.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Reset to $\mathrm{Q}_{\mathrm{A}}{ }^{\prime}$ or $\mathrm{Q}_{\mathrm{H}}{ }^{\prime}$ (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.0 \\ & 17.0 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Reset to Q_{A} thru Q_{H} (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.5 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.0 \\ & 16.5 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PZH }}$	Propagation Delay, OE1, OE2 to Q_{A} thru Q_{H} (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 13.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PZL }}$	Propagation Delay, OE1, OE2 to Q_{A} thru Q_{H} (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.0 \\ 5.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 18.0 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & 14.0 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Propagation Delay, OE1, OE2 to Q_{A} thru Q_{H} (Figure 3)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 15.0 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PLZ }}$	Propagation Delay, OE1, OE2 to Q_{A} thru Q_{H} (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance	5.0	4.5		4.5		pF

		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
C_{PD}	Power Dissipation Capacitance	170	pF

[^1]TIMING REQUIREMENTS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}}=3.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{*} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
			$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Mode Select S1 or S2 to Clock (Figure 4)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	ns
t_{su}	Minimum Setup Time, Data Inputs P_{A} thru P_{H} to Clock (Figure 4)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	ns
t_{su}	Minimum Setup Time, Data Inputs $\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{H}}$ to Clock (Figure 4)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	ns
t_{h}	Minimum Hold Time, Clock to Mode Select S1 or S2 (Figure 4)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	ns
t_{h}	Minimum Hold Time, Clock to Data Inputs P_{A} thru P_{H} (Figure 4)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 0 \\ 1.0 \end{gathered}$	$\begin{gathered} 0 \\ 1.0 \end{gathered}$	ns
t_{h}	Minimum Hold Time, Clock to Data Inputs $\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{H}}$ (Figure 4)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 0 \\ 1.0 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
t_{w}	Minimum Pulse Width, Clock (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	ns
t_{w}	Minimum Pulse Width, Reset (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	ns

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

FUNCTION TABLE

Inputs									Response									
Mode	Reset	Mode Select		Output Enables		Clock	Serial Inputs		$\begin{array}{\|l\|} \hline \mathrm{P}_{\mathrm{A}} \\ \mathrm{Q}_{\mathrm{A}} \end{array}$	$\begin{gathered} \mathrm{P}_{\mathrm{B}} / \\ \mathrm{Q}_{\mathrm{B}} \end{gathered}$	$\left\lvert\, \begin{aligned} & \mathrm{P}_{\mathrm{C}} \\ & \mathrm{Q}_{\mathrm{C}} \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \mathrm{P}_{\mathrm{D}} \\ \mathrm{Q}_{\mathrm{D}} \end{array}$	$\begin{aligned} & \mathrm{P}_{\mathrm{E}} / \\ & \mathrm{Q}_{\mathrm{E}} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{F}} \\ & \mathrm{Q}_{\mathrm{F}} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{P}_{\mathrm{G}} \\ \mathrm{Q}_{\mathrm{G}} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{P}_{\mathrm{H}} \\ \mathrm{Q}_{\mathrm{H}} \end{array}$	$\mathrm{Q}_{\mathrm{A}}{ }^{\text {, }}$	$\mathrm{Q}_{\mathrm{H}}{ }^{\prime}$
		S_{2}	S_{1}	OE14	OE2 ${ }^{\text {A }}$		$\mathrm{D}_{\text {A }}$	D_{H}										
Reset	L	X	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
	L	L	X	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
	L	H	H	X	X	X	X	X	Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z}$								L	L
Shift Right	H	L	H	H	X	\checkmark	D	X	Shift Right: Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z}$;$\mathrm{D}_{\mathrm{A}} \rightarrow \mathrm{~F}_{\mathrm{A}} ; \mathrm{F}_{\mathrm{A}} \rightarrow \mathrm{~F}_{\mathrm{B}} ; \text { etc }$								D	Q_{G}
	H	L	H	X	H	\checkmark	D	X	Shift Right: Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z}$; $\mathrm{D}_{\mathrm{A}} \rightarrow \mathrm{F}_{\mathrm{A}} ; \mathrm{F}_{\mathrm{A}} \rightarrow \mathrm{F}_{\mathrm{B}}$; etc								D	Q_{G}
	H	L	H	L	L	\checkmark	D	X	$\begin{gathered} \text { Shift Right: } \mathrm{D}_{\mathrm{A}} \rightarrow \mathrm{~F}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} ; \\ \mathrm{F}_{\mathrm{A}} \rightarrow \mathrm{~F}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{B}} ; \text { etc } \end{gathered}$								D	Q_{G}
Shift Left	H	H	L	H	X	\checkmark	X	D	Shift Left: Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z}$;$\mathrm{D}_{\mathrm{H}} \rightarrow \mathrm{~F}_{\mathrm{H}} ; \mathrm{F}_{\mathrm{H}} \rightarrow \mathrm{~F}_{\mathrm{G}} ; \text { etc }$								Q_{B}	D
	H	H	L	X	H	\checkmark	X	D	Shift Left: Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z}$;$\mathrm{D}_{\mathrm{H}} \rightarrow \mathrm{~F}_{\mathrm{H}} ; \mathrm{F}_{\mathrm{H}} \rightarrow \mathrm{~F}_{\mathrm{G}} ; \text { etc }$								Q_{B}	D
	H	H	L	L	L	\checkmark	X	D	$\begin{gathered} \text { Shift Left: } \mathrm{D}_{\mathrm{H}} \longrightarrow \mathrm{~F}_{\mathrm{H}}=\mathrm{Q}_{\mathrm{H}} ; \\ \mathrm{F}_{\mathrm{H}} \rightarrow \mathrm{~F}_{\mathrm{G}}=\mathrm{Q}_{\mathrm{G}} ; \text { etc } \end{gathered}$								Q_{B}	D
Parallel Load	H	H	H	X	X	\checkmark	X	X	Parallel Load $\mathrm{P}_{\mathrm{N}} \rightarrow \mathrm{F}_{\mathrm{N}}$								P_{A}	P_{H}
Hold	H	L	L	H	X	X	X	X	Hold: Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z} ; \mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{N}}$								P_{A}	P_{H}
	H	L	L	X	H	X	X	X	Hold: Q_{A} through $\mathrm{Q}_{\mathrm{H}}=\mathrm{Z} ; \mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{N}}$								P_{A}	P_{H}
	H	L	L	L	L	X	X	X	Hold: $\mathrm{Q}_{\mathrm{N}}=\mathrm{Q}_{\mathrm{H}}$								P_{A}	P_{H}

$\mathrm{Z}=$ high impedance
$\mathrm{D}=$ data on serial input
F = flip-flop (see Logic Diagram)
\uparrow When one or both output controls are high the eight input/output terminals are disabled to the highimpedance state; however, sequential operation or clearing of the register is not affected.

Figure 1. Switching Waveform
Figure 2. Switching Waveform

Figure 3. Switching Waveform

Figure 4. Switching Waveform

EXPANDED LOGIC DIAGRAM

[^0]: PIN $20=\mathrm{V}_{\mathrm{CC}}$
 PIN $10=$ GND

[^1]: *Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
 Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

