FEATURES:

- Choose among the following memory organizations:

$$
\begin{array}{lll}
\text { IDT72V36100 } & -65,536 \times 36 \\
\text { IDT72V36110 } & -131,072 \times 36
\end{array}
$$

- Higher density, 2Meg and 4Meg SuperSync II FIFOs
- Up to 166 MHz Operation of the Clocks
- User selectable Asynchronous read and/or write ports (PBGA Only)
- User selectable input and output port bus-sizing
- x36 in to x36 out
- x36 in to x18 out
- x36 in to x9 out
- x18 in to x36 out
- x9 in to x36 out
- Big-Endian/Little-Endian user selectable byte representation
- 5V input tolerant
- Fixed, low first word latency
- Zero latency retransmit
- Auto power down minimizes standby power consumption
- Master Reset clears entire FIFO
- Partial Reset clears data, but retains programmable settings
- Empty, Full and Half-Full flags signal FIFO status
- Programmable Almost-Empty and Almost-Full flags, each flag can default to one of eight preselected offsets
- Selectable synchronous/asynchronous timing modes for AlmostEmpty and Almost-Full flags
- Program programmable flags by either serial or parallel means
- Select IDT Standard timing (using EF and $\overline{F F}$ flags) or First Word Fall Through timing (using $\overline{O R}$ and $\overline{\mathrm{R}}$ flags)
- Output enable puts data outputs into high impedance state
- Easily expandable in depth and width
- JTAG port, provided for Boundary Scan function (PBGA Only)
- Independent Read and Write Clocks (permit reading and writing simultaneously)
- Available in a 128-pin Thin Quad Flat Pack (TQFP) or a 144-pin Plastic Ball Grid Array (PBGA) (with additional features)
- Pin compatible to the SuperSync II (IDT72V3640/72V3650/72V3660/ 72V3670/72V3680/72V3690) family
- High-performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM

*Available on the PBGA package only.

DESCRIPTION:

The IDT72V36100/72V36110 are exceptionally deep, high speed, CMOS First-In-First-Out(FIFO) memories with clocked read and write controls and a flexible Bus-Matching x36/x18/x9 data flow. These FIFOs offer several key userbenefits:

- Flexible x36/x18/x9 Bus-Matching on both read and write ports
- The period required by the retransmit operation is fixed and short.
- The firstword data latency period, from the time the first word is writtento an empty FIFO to the time it can be read, is fixed and short.
- Asynchronous/Synchronous translation on the read or write ports
- High density offerings up to 4 Mbit

Bus-Matching Sync FIFOs are particularly appropriate fornetwork, video, telecommunications, datacommunications and other applicationsthatneedto buffer large amounts of data and match busses of unequal sizes.

Each FIFO has a data input port (Dn) and a data output port ($\mathrm{Qnn}_{\mathrm{n}}$, both of which can assume either a 36 -bit, 18-bit or a 9 -bit width as determined by the state of external control pins Input Width (IW), Output Width (OW), and BusMatching (BM) pin during the Master Reset cycle.

The inputportcan be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the input port is controlled byaWriteClock(WCLK) inputandaWriteEnable($\overline{\mathrm{WEN}})$ input. Data present on the Dn data inputs is written into the FIFO on every rising edge of

PIN CONFIGURATIONS

NOTE:

1. $\operatorname{DNC}=$ Do Not Connect.

DESCRIPTION (CONTINUED)

WCLK when $\overline{W E N}$ is asserted. During Asynchronous operation only the WR input is used to write data into the FIFO. Data is written on a rising edge ofWR, the $\overline{W E N}$ input should be tied to its active state, (LOW).

Theoutputportcanbe selectedas eitheraSynchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the output port is controlled by a Read Clock (RCLK) input and Read Enable ($\overline{\operatorname{REN}})$ input. Data is read from the FIFO on every rising edge of RCLK when $\overline{R E N}$ is asserted. During Asynchronous operation only the RD inputis used to read data from the FIFO. Data is read on a rising edge of RD, the $\overline{R E N}$ input should be tied to its
active state,LOW. When Asynchronous operationis selected onthe outputport the FIFO must be configured for Standard IDT mode, and the $\overline{\text { OE input used }}$ to provide three-state control of the outputs, Qn.

The frequencies of both the RCLK and the WCLK signals may vary from 0 tofmaxwith complete independence. Thereare no restrictions onthefrequency of the one clock input with respect to the other.

There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall Through (FWFT) mode.

In IDTStandardmode, the firstword writtento anempty FIFO will notappear on the data output lines unless a specific read operation is performed. A read

PIN CONFIGURATIONS (CONTINUED)

PBGA: 1 mm pitch, $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ (BB144-1, order code: BB)
TOP VIEW

DESCRIPTION (CONTINUED)

operation, which consists of activating $\overline{R E N}$ and enabling a rising RCLKedge, will shift the word from internal memory to the data output lines.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A $\overline{R E N}$ does not have to be asserted for accessing the first word. However, subsequent words written to the FIFO do require a LOW on $\overline{\text { REN }}$ for access. The state of the FWFT/SI input during Master Reset determines the timing mode in use.

For applications requiring more data storage capacity than a single FIFO can provide, the FWFTtiming modepermits depth expansionbychaining FIFOs in series (i.e. the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.

These FIFOs have five flag pins, $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ (Empty Flag or Output Ready), $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ (Full Flag or Input Ready), $\overline{\mathrm{HF}}$ (Half-full Flag), $\overline{\mathrm{PAE}}$ (Programmable Almost-Empty flag) and $\overline{\mathrm{PAF}}$ (Programmable Almost-Fullflag). The $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions are selected in IDT Standard mode. The $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$ functions are selected in FWFT mode. $\overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ are always available for use, irrespective of timing mode.
$\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ can be programmed independently to switch at any point in memory. Programmableoffsets determinetheflag switchingthresholdandcan beloaded bytwo methods: parallel or serial. Eightdefault offsetsettings arealso provided, so that $\overline{\text { PAE }}$ can be setto switch at a predefined number of locations
from the empty boundary and the $\overline{\text { PAF }}$ threshold can also be set at similar predefinedvalues fromthefull boundary. The defaultoffsetvalues are setduring Master Reset by the state of the FSELO, FSEL1, and $\overline{\mathrm{LD}}$ pins.

For serial programming, $\overline{\text { SEN }}$ together with $\overline{\mathrm{LD}}$ on each rising edge of WCLK, are used to load the offsetregisters viathe Serial Input(SI). For parallel programming, $\overline{\mathrm{WEN}}$ together with $\overline{\mathrm{LD}}$ on each rising edge of WCLK, are used to load the offset registers via Dn. $\overline{\mathrm{REN}}$ together with $\overline{\mathrm{LD}}$ on each rising edge of RCLK canbe used to read the offsets in parallel from Qn regardless of whether serial or parallel offset loading has been selected.

During Master Reset ($\overline{\mathrm{MRS}})$ the following events occur: the read and write pointers are set to the first location of the FIFO. The FWFT pin selects IDT Standard mode or FWFT mode.

The Partial Reset ($\overline{\mathrm{PRS}})$ also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable flag programmingmethod, anddefaultorprogrammed offsetsettings existing before Partial Reset remain unchanged. Theflags are updated according tothetiming mode and offsets in effect. $\overline{\text { PRS }}$ is useful for resetting a device in mid-operation, when reprogramming programmable flags would be undesirable.

Itis alsopossibletoselectthetimingmodeofthe $\overline{\mathrm{PAE}}$ (Programmable AlmostEmpty flag) and $\overline{\mathrm{PAF}}$ (Programmable Almost-Full flag) outputs. The timing modes can be setto be either asynchronous or synchronous for the $\overline{\mathrm{PAE}}$ and $\overline{\text { PAF flags. }}$

Figure 1. Single Device Configuration Signal Flow Diagram

If asynchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted LOW ontheLOW-to-HIGHtransition of RCLK. $\overline{\text { PAE is resetto HIGH ontheLOW- }}$ to-HIGH transition of WCLK. Similarly, the $\overline{P A F}$ is asserted LOW on the LOW-to-HIGH transition of WCLK and $\overline{\text { PAF }}$ is reset to HIGH on the LOW-to-HIGH transition of RCLK.

Ifsynchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configurationis selected, the $\overline{\mathrm{PAE}}$ is assertedand updated on the rising edge of RCLK only and not WCLK. Similarly, $\overline{\text { PAF }}$ is asserted andupdated onthe risingedge ofWCLKonly and not RCLK. The mode desiredis configuredduringMasterResetbythe state ofthe ProgrammableFlag Mode (PFM) pin.

The Retransmitfunction allows data to be reread from the FIFO more than once. ALOW on the $\overline{\mathrm{RT}}$ input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. A zero-latency retransmittiming mode can be selected using the Retransmit timing Mode pin (RM). During Master Reset, a LOW on RM will select zero latency retransmit. A HIGH on RM during Master Reset will select normal latency.

If zero latency retransmit operation is selected, the first data word to be retransmitted will be placed ontheoutput register with respecttothe sameRCLK edge that initiated the retransmit based on RT being LOW.

Refer to Figure 11 and 12 for Retransmit Timing with normal latency. Refer to Figure 13 and 14 for Zero Latency Retransmit Timing.

The device can be configured with different input and output bus widths as shown in Table 1.

A Big-Endian/Little-Endian data word format is provided. This function is useful when data is written intotheFIFO in long wordformat (x36/x18) and read
out of the FIFO in small word (x18/x9) format. If Big-Endian mode is selected, then the mostsignificantbyte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the leastsignificantbyte. If Little-Endian format is selected, then the leastsignificant byte of the long word written intothe FIFO will be read outfirst, followed bythemostsignificantbyte. Themodedesired is configured during master reset by the state of the Big-Endian $(\overline{\mathrm{BE}})$ pin. See Figure 4 for Bus-Matching Byte Arrangement.

The Interspersed/Non-Interspersed Parity (IP) bitfunction allows the user to select the parity bit in the word loaded into the parallel port ($\mathrm{D} 0-\mathrm{Dn}$) when programming the flag offsets. If Interspersed Parity mode is selected, thenthe FIFO will assume that the parity bitis located in bit positions D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D26 are assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effectduringparallel programmingoftheoffsetregisters. Itdoesnoteffectthedata written to and read from the FIFO.

AJTAG test port is provided, here the FIFO has fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

If, at any time, the FIFO is not actively performing an operation, the chip will automatically power down. Once in the power down state, the standby supply current consumption is minimized. Initiating any operation (by activating control inputs) will immediately take the device out of the power down state.

The IDT72V36100/72V36110 are fabricated using IDT's high speed submicronCMOStechnology.

TABLE 1 - BUS-MATCHING CONFIGURATION MODES

BM	IW	OW	Write Port Width	Read Port Width
L	L	L	x36	x36
H	L	L	x 36	x18
H	L	H	x 36	x9
H	H	L	x 18	x36
H	H	H	$\mathrm{x9}$	x36

NOTE:

1. Pin status during Master Reset.

PIN DESCRIPTION (TQFP AND PBGA PACKAGES)

Symbol	Name	I/O	Description
$\mathrm{BM}^{(1)}$	Bus-Matching	1	BM works with IW and OW to selectthe bus sizes forboth write and read ports. See Table 1 for bus size configuration.
$\overline{\mathrm{BE}}{ }^{(1)}$	Big-Endian/ Little-Endian	1	During Master Reset, a LOW on $\overline{\mathrm{BE}}$ will select Big-Endian operation. A HIGH on $\overline{\mathrm{BE}}$ during Master Reset will selectLittle-Endianformat.
D0-D35	Datalnputs	1	Data inputs for a 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused input pins are in a don't care state.
$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Empty Flag/ Output Ready	0	In the IDT Standard mode, the $\overline{\mathrm{EF}}$ function is selected. $\overline{\mathrm{EF}}$ indicates whether or not the FIFO memory is empty. InFWFT mode, the $\overline{\mathrm{OR}}$ function is selected. $\overline{\mathrm{OR}}$ indicates whether or not there is valid data available at the outputs.
$\overline{\mathrm{FF}} / \overline{\mathrm{I}}$	Full Flag/ Input Ready	0	In the IDT Standard mode, the $\overline{F F}$ function is selected. $\overline{\text { FF }}$ indicates whether or not the FIFO memory is full. In the FWFT mode, the $\overline{\mathrm{R}}$ function is selected. $\overline{\mathrm{R}}$ indicates whether or not there is space available for writing to the FIFO memory.
FSELO ${ }^{(1)}$	Flag SelectBit0	I	DuringMasterReset, this inputalong with FSEL1 andthe $\overline{\mathrm{LD}}$ pin, will selectthe defaultoffsetvaluesforthe programmable flags PAE and $\overline{\text { PAF }}$. There are up to eight possible settings available.
FSEL1 ${ }^{(1)}$	FlagSelectBit 1	I	DuringMasterReset, this inputalong with FSELO andthe $\overline{\text { LD }}$ pin will selectthe defaultoffsetvalues fortheprogrammable flags $\overline{P A E}$ and $\overline{\text { PAF }}$. There are up to eight possible settings available.
FWFT/SI	First Word Fall Through/Serial In	I	During Master Reset, selects FirstWord Fall Through or IDT Standard mode. After Master Reset, this pinfunctions as a serial inputforloading offsetregisters.
$\overline{\mathrm{HF}}$	Half-Full Flag	0	$\overline{\mathrm{HF}}$ indicates whether the FIFO memory is more or less than half-full.
$\mathrm{PP}^{(1)}$	Interspersed Parity	1	During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.
IW ${ }^{(1)}$	InputWidth	1	This pin, along with OW and MB, selects the bus width of the write port. See Table 1 for bus size configuration.
$\overline{\text { LD }}$	Load	1	This is a dual purpose pin. During Master Reset, the state of the $\overline{\mathrm{LD}}$ inputalong with FSELO and FSEL1, determines one of eight default offset values forthe $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags, along withthe method by which these offset registers can be programmed, parallel or serial (seeTable2). After Master Reset, this pin enables writing to and reading from the offsetregisters.
$\overline{\mathrm{OE}}$	OutputEnable	1	$\overline{\mathrm{OE}}$ controls the output impedance of $\mathrm{Qn}^{\text {n. }}$
OW ${ }^{(1)}$	OutputWidth	1	This pin, along with IW and BM, selects the bus width of the read port. See Table 1 for bus size configuration.
$\overline{\mathrm{MRS}}$	Master Reset	I	$\overline{\mathrm{MRS}}$ initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, theFIFO is configuredforeitherFWFT orIDTStandardmode,Bus-Matching configurations, one of eightprogrammable flagdefault settings, serial or parallel programming of the offsetsettings, Big-Endian/Little-Endianformat, zerolatency timing mode, interspersed parity, and synchronous versus asynchronous programmable flag timing modes.
$\overline{\text { PAE }}$	Programmable Almost-Empty Flag	0	$\overline{\text { PAE }}$ goes LOW if the number of words in the FIFO memory is less than offsetn, which is stored in the Empty Offset register. $\overline{\text { PAE }}$ goes HIGH if the number of words in the FIFO memory is greater than or equal to offset n.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	$\overline{\text { PAF }}$ goes HIGH if the number of free locations in the FIFO memory is more than offset m, which is stored in the Full Offset register. PAF goes LOW if the number of free locations in the FIFO memory is less than or equal to m.
PFM ${ }^{(1)}$	Programmable Flag Mode	1	During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flagtiming mode.
$\overline{\text { PRS }}$	Partial Reset	I	$\overline{\mathrm{PRS}}$ initializes the read and write pointers to zero and sets the output register to all zeroes. During Partial Reset, the existing mode (IDT or FWFT), programming method (serial or parallel), and programmable flag settings are all retained.
Q0-Q35	DataOutputs	0	Data outputs for an 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused output pins are in a don't care state. Outputs are not 5 V tolerant regardless of the state of $\overline{\mathrm{E}}$.
$\begin{aligned} & \mathrm{RCLK} \\ & \mathrm{RD} \end{aligned}$	ReadClock/ Read Strobe	I	If Synchronous operation of the read port has been selected, when enabled by $\overline{R E N}$, the rising edge of RCLK reads data from the FIFO memory and offsets from the programmable registers. If $\overline{L D}$ is LOW, the values loaded into the offset registers is output on a rising edge of RCLK. If Asynchronous operation of the read port has been selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. $\overline{\text { REN }}$ should be tied LOW. Asynchronous operation of the RCLK/RD input is only available in the PBGA package.
$\overline{\mathrm{REN}}$	Read Enable	1	$\overline{\mathrm{REN}}$ enables RCLK for reading data from the FIFO memory and offset registers.
$\mathrm{RM}^{(1)}$	RetransmitTiming Mode	I	During Master Reset, a LOW on RM will select zero latency Retransmittiming Mode. A HIGH on RM will select normal latency mode.
$\overline{\mathrm{R} T}$	Retransmit	1	$\overline{\mathrm{RT}}$ asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the $\overline{\mathrm{EF}}$ flag to LOW ($\overline{\mathrm{OR}}$ to HIGH in FWFT mode) and does not disturb the write pointer, programming method, existing timing mode or programmable flag settings. $\overline{\mathrm{RT}}$ is useful to reread data from the first physical location of the FIFO.

NOTE:

1. Inputs should not change state after Master Reset.

PIN DESCRIPTION-CONTINUED (TQFP \& PBGA PACKAGES)

Symbol	Name	I/O	Description
$\overline{\text { SEN }}$	Serial Enable	1	$\overline{\text { SEN }}$ enables serial loading of programmable flag offsets.
WCLKI WR	WriteClock/ WriteStrobe	1	If Synchronous operation of the write port has been selected, when enabled by $\overline{\mathrm{WEN}}$, the rising edge of WCLK writes data into the FIFO. If Asynchronous operation of the write porthas been selected, WR writes datainto the FIFO on a rising edge in an Asynchronous manner, (WEN should be tied to its active state). Asynchronous operation of the WCLK/WR input is only available in the PBGA package.
WEN	Write Enable	I	$\overline{\text { WEN }}$ enables WCLK for writing data into the FIFO memory and offset registers.
Vcc	+3.3V Supply	I	These are Vcc supply inputs and must be connected to the 3.3 V supply rail.

NOTE:

1. Inputs should not change state after Master Reset.

PIN DESCRIPTION (PBGA PACKAGE ONLY)

Symbol	Name	I/O	Description
$\overline{\text { ASYR }}^{(1)}$	Asynchronous Read Port	1	A HIGH on this input during Master Reset will select Synchronous read operation for the output port. A LOW will select Asynchronous operation. If Asynchronous is selected the FIFO must operate in IDT Standard mode.
$\overline{\text { ASYW }}^{(1)}$	Asynchronous WritePort	1	A HIGH on this input during Master Reset will select Synchronous write operation for the input port. A LOW will select Asynchronous operation.
TCK ${ }^{(2)}$	JTAG Clock	I	Clockinputfor JTAG function. One of fourterminals required by IEEE Standard 1149.1-1990. Testoperations of the device are synchronousto TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(2)}$	JTAG TestData Input	1	One offour terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded viatheTDI on the rising edge of TCK to eitherthe Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.
TDO ${ }^{(2)}$	JTAG TestData Output	0	One offourterminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviatheTDO onthefalling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
TMS ${ }^{(2)}$	JTAG Mode	I	TMS is a serial inputpin. One offourterminals required by IEEE Standard 1149.1-1990. TMS directsthe device through its TAP controller states. An internal pull-up resistor forces TMS HIGH ifleft unconnected.
$\overline{\mathrm{TRST}^{(2)}}$	JTAGReset	I	$\overline{\text { TRST }}$ is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller will automatically reset upon power-up. If the JTAG function is not used then this signal should to be tied to GND.

NOTES:

1. Inputs should not change state after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 43-47 and Figures 31-33.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'I	Unit
VTERM $^{(2)}$	Terminal Voltage with respect to GND	$-0.5 \mathrm{to}+4.5$	V
TSTG	Storage Temperature	$-55 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	$-50 \mathrm{to}+50$	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VCC terminal only.

RECOMMENDEDDC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC ${ }^{(1)}$	Supply Voltage Com'//Ind'।	3.15	3.3	3.45	V
GND	Supply Voltage Com'//Ind'\|	0	0	0	V
$\mathrm{V} / \mathrm{H}^{(2)}$	Input High Voltage Com'//Ind'\|	2.0	-	5.5	V
VIL ${ }^{(3)}$	Input Low Voltage Com'//Ind'\|	-	-	0.8	V
TA	OperatingTemperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

NOTES:

1. $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$, JEDEC JESD8-A compliant.
2. Outputs are not 5 V tolerant.
3. 1.5V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	IDT72V36100L IDT72V36110L Commercial and Industrial ${ }^{(1)}$ tCLK $=6,7-5,10,15 \mathrm{~ns}$		Unit
		Min.	Max.	
$1 \mathrm{IL}{ }^{(2)}$	InputLeakage Current	-1	1	$\mu \mathrm{A}$
$\mathrm{ILO}{ }^{(3)}$	OutputLeakage Current	-10	10	$\mu \mathrm{A}$
Voh	Output Logic "1" Voltage, IOH = -2 mA	2.4	-	V
VoL	Output Logic "0" Voltage, IOL = 8 mA	-	0.4	V
ICC1 ${ }^{(4,5,6)}$	Active Power Supply Current	-	40	mA
ICC2 ${ }^{(4,7)}$	Standby Current	-	15	mA

NOTES:

1. Industrial temperature range product for the $7-5 \mathrm{~ns}$ and 15 ns speed grade are available as a standard device. All other speed grades are available by special order.
2. Measurements with $0.4 \leq \mathrm{V} \mathbb{N} \leq \mathrm{Vcc}$.
3. $\overline{\mathrm{OE}} \geq \mathrm{VIH}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs open (lout $=0$).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
6. Typical $\operatorname{IcC1}=4.2+1.4^{*} f s+0.002^{*} L^{*} f s$ (in mA) with $\mathrm{VcC}=3.3 \mathrm{~V}$, $\mathrm{tA}=25^{\circ} \mathrm{C}$, $\mathrm{fs}=\mathrm{WCLK}$ frequency $=$ RCLK frequency (in MHz , using TTL levels), data switching at fs/2, $\mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$, except RCLK and WCLK, which toggle at 20 MHz .

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	pF
CouT $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{I}}$).
2. Characterized values, not currently tested.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Commercial PBGA \& TQFP		Com'I \& Ind' ${ }^{(2)}$ PBGA \& TQFP		Commercial TQFP Only		Com'I \& Ind'\|(2) TQFP Only		Unit
		IDT72V36100L6 IDT72V36110L6		IDT72V36100L7-5IDT72V36110L7-5		$\begin{aligned} & \text { IDT72V36100L10 } \\ & \text { IDT72V36110L10 } \end{aligned}$		IDT72V36100L15IDT72V36110L15		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency	-	166	-	133.3	-	100	-	66.7	MHz
tA	Data Access Time ${ }^{(5)}$	1	4	$1^{(5)}$	5	$1^{(5)}$	6.5	$1^{(5)}$	10	ns
tCLK	Clock Cycle Time	6	-	7.5	-	10	-	15	-	ns
tCLKH	Clock High Time	2.7	-	3.5	-	4.5	-	6	-	ns
tCLKL	Clock Low Time	2.7	-	3.5	-	4.5	-	6	-	ns
tos	DataSetup Time	2	-	2.5	-	3.5	-	4	-	ns
DH	Data Hold Time	0.5	-	0.5	-	0.5	-	1	-	ns
tens	Enable Setup Time	2	-	2.5	-	3.5	-	4	-	ns
tenh	Enable Hold Time	0.5	-	0.5	-	0.5	-	1	-	ns
tLDS	LoadSetup Time	3	-	3.5	-	3.5	-	4	-	ns
セDH	Load Hold Time	0.5	-	0.5	-	0.5	-	1	-	ns
trs	ResetPulse Width ${ }^{(3)}$	10	-	10	-	10	-	15	-	ns
tRSS	Reset Setup Time	15	-	15	-	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	10	-	15	-	ns
tRSF	Resetto Flagand Output Time	-	15	-	15	-	15	-	15	ns
tRTS	RetransmitSetup Time	3	-	3.5	-	3.5	-	4	-	ns
tolz	Output Enable to Outputin Low ${ }^{(4)}$	0	-	0	-	0	-	0	-	ns
toe	OutputEnable to Output Valid ${ }^{(5)}$	1	4	$1^{(5)}$	6	$1^{(5)}$	6	$1^{(5)}$	8	ns
tohz	Output Enable to Output in High ${ }^{(4,5)}$	1	4	$1^{(5)}$	6	$1^{(5)}$	6	$1^{(5)}$	8	ns
twFF	Write Clock to $\overline{\mathrm{FF}}$ or $\overline{\mathrm{R}}$	-	4	-	5	-	6.5	-	10	ns
tref	Read Clock to EF or $\overline{\mathrm{OR}}$	-	4	-	5	-	6.5	-	10	ns
tPAFA	Clock to Asynchronous Programmable Almost-Full Flag	-	10	-	12.5	-	16	-	20	ns
tPAFS	Write Clock to Synchronous Programmable Almost-Full Flag	-	4	-	5	-	6.5	-	10	ns
tPAEA	Clock to Asynchronous Programmable Almost-Empty Flag	-	10	-	12.5	-	16	-	20	ns
tPAES	Read Clockto Synchronous Programmable Almost-Empty Flag	-	4	-	5	-	6.5	-	10	ns
thF	Clock to $\overline{\mathrm{HF}}$	-	10	-	12.5	-	16	-	20	ns
tSkew1	Skew time between RCLK and WCLK for EF/ $\overline{\mathrm{OR}}$ and $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$	4	-	5	-	7	-	9	-	ns
tSkEW2	Skew time between RCLK and WCLK for $\overline{\overline{P A E}}$ and $\overline{\mathrm{PAF}}$	5	-	7	-	10	-	14	-	ns

NOTES:

1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product for the $7-5 \mathrm{~ns}$ and 15 ns are available as a standard device. All other speed grades are available by special order.
3. Pulse widths less than minimum values are not allowed.
4. Values guaranteed by design, not currently tested.
5. TQFP package only: for speed grades $7-5 \mathrm{~ns}, 10 \mathrm{~ns}$ and 15 ns the minimum for tA , tOE, and tOHZ is 2 ns .

AC ELECTRICALCHARACTERISTICS ${ }^{(1)}$-ASYNCHRONOUSTIMING

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	CommercialIDT72V36100L6IDT72V36110L6		Com'I \& Ind'IIDT72V36100L7-5IDT72V36110L7-5		Unit
		Min.	Max.	Min.	Max.	
$\mathrm{fA}^{(4)}$	Cycle Frequency (Asynchronous mode)	-	100	-	83	MHz
taA ${ }^{(4)}$	Data Access Time	0.6	8	0.6	10	ns
tCYC ${ }^{(4)}$	Cycle Time	10	-	12	-	ns
tCYM ${ }^{(4)}$	Cycle HIGH Time	4.5	-	5	-	ns
tcy(${ }^{(4)}$	Cycle LOW Time	4.5	-	5	-	ns
tRPE ${ }^{(4)}$	Read Pulse after EFF HIGH	8	-	10	-	ns
tFFA ${ }^{(4)}$	Clock to Asynchronous FF	-	8	-	10	ns
tEFA ${ }^{(4)}$	Clock to Asynchronous EFF	-	8	-	10	ns
tPAFA ${ }^{(4)}$	Clock to Asynchronous Programmable Almost-Full Flag	-	8	-	10	ns
tPAEA ${ }^{(4)}$	Clock to Asynchronous Programmable Almost-Empty Flag	-	8	-	10	ns

NOTES:

1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.
4. Parameters apply to the PBGA package only.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
InputRise/Fall Times	$3 \mathrm{~ns}^{(1)}$
Input Timing Reference Levels	1.5 V
OutputReference Levels	1.5 V
Output Load fortCLK $=10 \mathrm{~ns}, 15 \mathrm{~ns}$	See Figure2a
Output Load fortcLK $=6 \mathrm{~ns}, 7.5 \mathrm{~ns}$	See Figure 2b \& 2c

NOTE:

1. For 166 MHz and 133 MHz operation input rise/fall times are 1.5 ns .

AC TEST LOADS - 6ns, 7.5ns Speed Grade

Figure 2b. AC Test Load

AC TEST LOADS -10ns,15ns Speed Grades

Figure 2a. Output Load

* Includes jig and scope capacitances.

Figure 2c. Lumped Capacitive Load, Typical Derating

OUTPUT ENABLE \& DISABLE TIMING

FUNCTIONAL DESCRIPTION

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE

The IDT72V36100/72V36110 support two different timing modes of operation:IDTStandard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determinedduring Master Reset, by the state of the FWFT/S linput.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}}$) to indicate whether or notthere are any words present in the FIFO. Italso uses the Full Flagfunction (FF) to indicate whether or not the FIFO has any free space for writing. IIIDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable ($\overline{\operatorname{REN}})$ and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{R}}$) to indicate whether ornot there is valid data at the data outputs (Qn). Italso uses Input Ready ($\overline{\mathbb{R}}$) to indicate whether or not the FIFO has any free space for writing. In the FWFT mode, the firstword writtento anempty FIFO goes directly to Qnafterthree RCLKrising edges, $\overline{\text { REN }}=$ LOW is notnecessary. Subsequent words mustbe accessed using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

Various signals, bothinputand outputsignals operate differently depending on which timing mode is in effect.

IDT STANDARD MODE

In this mode, the status flags, $\overline{F F}, \overline{P A F}, \overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{EF}}$ operate in the manner outlined in Table 3 . Towrite datainto tothe FIFO, Write Enable ($\overline{\mathrm{WEN})}$ mustbeLOW. Data presentedtothe DATAINlines will beclocked intothe FIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag (EF) will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH aftern +1 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated inthe footnote of Table 2. This parameteris also userprogrammable. See section on Programmable Flag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations weretaking place, the Half-Fullflag(MF) would toggle toLOW once the32,769th wordforthe IDT72V36100 and65,537thwordforthe IDT72V36110, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the Programmable Almost-Full flag ($\overline{\mathrm{PAF}})$ to go LOW. Again, if no reads are performed, the $\overline{\text { PAF }}$ will go LOW after ($65,536-\mathrm{m}$) writes for the IDT72V36100 and ($131,072-\mathrm{m}$) writes for the IDT72V36110. The offset " m " is the full offsetvalue. The defaultsettingforthese values are stated inthefootnote of Table 2. This parameter is also user programmable. See section on Programmable Flag OffsetLoading.

Whenthe FIFO isfull, the Full Flag($\overline{F F}$) will go LOW, inhibiting further write operations. Ifno reads are performedafter areset, $\overline{\overline{F F}}$ will goLOW afterD writes
to the FIFO. $D=65,536$ writes for the IDT72V36100 and 131,072 writes for the IDT72V36110, respectively.

If the FIFO is full, the first read operation will cause $\overline{\mathrm{FF}}$ to go HIGH. Subsequentreadoperations will cause $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ to go HIGH attheconditions described in Table 3. Iffurther read operations occur, withoutwrite operations, $\overline{\text { PAE }}$ will go LOW when there are n words in the FIFO, where n is the empty offsetvalue. Continuing read operations will cause the FIFO to becomeempty. When the last word has been read from the FIFO, the $\overline{\mathrm{EF}}$ will go LOW inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored when the FIFO is empty.

When configured in IDT Standard mode, the $\overline{\mathrm{EF}}$ and $\overline{F F}$ outputs are double register-buffered outputs.

Relevant timing diagrams for IDT Standard mode can be found in Figure 7,8,11 and 13.

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the status flags, $\overline{\mathrm{R}}, \overline{\mathrm{PAF}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{OR}}$ operate in the manneroutlined in Table 4. To write data intoto the FIFO, WEN mustbe LOW. Datapresentedtothe DATAIN lines will beclockedintothe FIFO on subsequent transitions of WCLK. After the firstwrite is performed, the Output Ready (OR) flag will go LOW. Subsequent writes will continue to fill up the FIFO. PAE will go HIGH aftern +2 words have been loaded into the FIFO, where n is the empty offsetvalue. The defaultsettingforthese values are stated inthe footnote of Table 2. This parameterisalso user programmable. See section on Programmable Flag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the $\overline{\mathrm{HF}}$ would toggle to LOW once the 32,770 th word forthe IDT72V36100 and 65,538th word for the IDT72V36110, respectively was written intothe FIFO. Continuingto write dataintothe FIFO will cause the $\overline{\text { PAF }}$ to go LOW. Again, if no reads are performed, the $\overline{\text { PAF }}$ will go LOW after ($65,537-\mathrm{m}$) writes for the IDT72V36100 and ($131,073-\mathrm{m}$) writes for the IDT72V36110, where m is the full offset value. The default setting for these values are stated in the footnote of Table 2.

Whenthe FIFO is full, the Input Ready ($(\overline{\mathbb{R}})$ flagwill go HIGH, inhibiting further write operations. If no reads are performed after a reset, $\overline{\mathbb{R}}$ will go HIGH after D writes to the FIFO. $D=65,537$ writes for the IDT72V36100 and 131,073 writesforthe IDT72V36110, respectively. Notethatthe additional word inFWFT mode is due to the capacity of the memory plus outputregister.

If the FIFO is full, the first read operation will cause the $\overline{\mathrm{R}}$ flag to go LOW. Subsequent read operations will cause the $\overline{\text { PAF }}$ and $\overline{\mathrm{FF}}$ to go HIGH at the conditions described in Table 4. Iffurther read operations occur, without write operations, the $\overline{\text { PAE will go LOW whenthere aren }+1 \text { words inthe FIFO, where }}$ nis the empty offsetvalue. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, $\overline{\mathrm{OR}}$ will go HIGH inhibitingfurtherread operations. RENisignoredwhenthe FIFO is empty.
When configured in FWFT mode, the OR flag output is triple registerbuffered, and the $\overline{\mathbb{R}}$ flag outputis double register-buffered.

Relevant timing diagrams for FWFT mode can be found in Figure 9, 10, 12, and 14.

TABLE 2 - DEFAULT PROGRAMMABLE FLAG OFFSETS

IDT72V36100, 72V36110			
$\overline{\mathrm{LD}}$	FSEL1	FSEL0	Offsets n,m
L	H	L	16,383
L	L	H	8,191
L	H	H	4,095
H	H	L	2,047
H	L	L	1,023
H	L	H	511
H	H	H	255
L	L	L	127
$\overline{\mathrm{LD}}$	FSEL1	FSEL0	Program Mode
H	X	X	Serial ${ }^{[3]}$
L	X	X	Parallelel ${ }^{44}$

NOTES:

1. $n=$ empty offset for $\overline{\mathrm{PAE}}$.
2. $m=$ full offset for $\overline{P A F}$.
3. As well as selecting serial programming mode, one of the default values will also be loaded depending on the state of FSELO \& FSEL1.
4. As well as selecting parallel programming mode, one of the default values will also be loaded depending on the state of FSELO \& FSEL1.

PROGRAMMING FLAG OFFSETS

FullandEmptyFlagoffsetvaluesareuserprogrammable. TheIDT72V36100/ 72V36110have internal registersforthese offsets. There are eight defaultoffset values selectable during Master Reset. Theseoffsetvalues are showninTable 2. Offsetvaluescan alsobe programmedintotheFIFO in one oftwo ways; serial or parallel loading method. The selection of the loading method is done using
the $\overline{\mathrm{LD}}$ (Load) pin. During Master Reset, the state of the $\overline{\mathrm{L}}$ input determines whether serial or parallel flag offset programming is enabled. AHIGH on $\overline{L D}$ during MasterResetselects serial loading of offsetvalues. ALOW on $\overline{L D}$ during Master Reset selects parallelloading of offset values.

In addition to loading offset values into the FIFO, it is also possible to read the current offset values. Offset values can be read via the parallel output port Q0-Qn, regardless of the programming mode selected (serial or parallel). It is not possible to read the offset values in serial fashion.

Figure 3, Programmable Flag OffsetProgramming Sequence, summaries the control pins and sequenceforboth serial and parallel programmingmodes. For a more detailed description, see discussion that follows.

Theoffsetregistersmay be programmed (and reprogrammed) anytimeafter Master Reset, regardless of whether serial or parallel programming has been selected. Valid programming ranges are from 0 to D-1.

SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG TIMING SELECTION

The IDT72V36100/72V36110 can be configured during the Master Reset cycle with either synchronous or asynchronoustiming for $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{PAE}}$ flags by use of the PFM pin.

If synchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, HIGH during $\overline{\mathrm{MRS}}$), the PAF is asserted and updated on the rising edge of WCLK only and notRCLK. Similarly, $\overline{\text { PAE }}$ is asserted and updated onthe rising edge of RCLK only and notWCLK. For detail timing diagrams, see Figure 17 for synchronous $\overline{\mathrm{PAF}}$ timing and Figure 18 for synchronous $\overline{\mathrm{PAE}}$ timing.

If asynchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, LOW during $\overline{\text { MRS }}$), the PAF is asserted LOW ontheLOW-to-HIGH transition of WCLK and $\overline{\mathrm{PAF}}$ is resetto HIGH onthe LOW-to-HIGH transition of RCLK. Similarly, $\overline{\mathrm{PAE}}$ is assertedLOW ontheLOW-to-HIGHtransition of RCLK. PAE is resetto HIGH ontheLOW-to-HIGHtransition ofWCLK. Fordetail timing diagrams, see Figure 19for asynchronous $\overline{\mathrm{PAF}}$ timing and Figure20 for asynchronous $\overline{\mathrm{PAE}}$ timing.

TABLE 3 - STATUS FLAGS FOR IDT STANDARD MODE

Number of Words in FIFO	IDT72V36100	IDT72V36110	$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
	0	0	H	H	H	L	L
	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	H	H	H	L	H
	$(\mathrm{n}+1)$ to 32,768	$(\mathrm{n}+1)$ to 65,536	H	H	H	H	H
	32,769 to (65,536-(m+1))	65,537 to (131,072-(m+1))	H	H	L	H	H
	(65,536-m) to 65,535	(131,072-m) to 131,071	H	L	L	H	H
	65,536	131,072	L	L	L	H	H

NOTE:

1. See table 2 for values for n, m.

TABLE 4 - STATUS FLAGS FOR FWFT MODE

Number of Words in FIFO	IDT72V36100	IDT72V36110	$\overline{\text { IR }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\mathrm{OR}}$
	0	0	L	H	H	L	H
	1 to $\mathrm{n}+1$	1 to $\mathrm{n}+1$	L	H	H	L	L
	$(\mathrm{n}+2)$ to 32,769	$(\mathrm{n}+2)$ to 65,537	L	H	H	H	L
	32,770 to (65,537-(m+1))	65,538 to (131,073-(m+1))	L	H	L	H	L
	(65,537-m) to 65,536	(131,073-m) to 131,072	L	L	L	H	L
	65,537	131,073	H	L	L	H	L

NOTE:
6117 drw05

1. See table 2 for values for n, m.

$\overline{\text { LD }}$	WEN	$\overline{\mathrm{REN}}$	$\overline{\text { SEN }}$	WCLK	RCLK	$\begin{aligned} & \text { IDT72V36100 } \\ & \text { IDT72V36110 } \end{aligned}$
0	0	1	1	$+$	X	Parallel write to registers: Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	0	1	X	\uparrow	Parallel read from registers: Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	1	0	4	X	Serial shift into registers: 32 bits for the 72V36100 34 bits for the 72V36110 1 bit for each rising WCLK edge Starting with Empty Offset (LSB) Ending with Full Offset (MSB)
X	1	1	1	X	X	No Operation
1	0	X	X	$\stackrel{5}{4}$	X	Write Memory
1	X	0	X	X	$\stackrel{4}{4}$	Read Memory
1	1	1	X	X	X	No Operation

NOTES:

1. The programming method can only be selected at Master Reset.
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.
3. The programming sequence applies to both IDT Standard and FWFT modes.

Figure 3. Programmable Flag Offset Programming Sequence

\# of Bits Used

16 bits for the IDT72V36100 17 bits for the IDT72V36110 Note: All unused bits of the LSB \& MSB are don't care

Figure 3. Programmable Flag Offset Programming Sequence (Continued)

2nd Parallel Offset Write/Read Cycle D/Q8 D/Q0

3rd Parallel Offset Write/Read Cycle D/Q8

4th Parallel Offset Write/Read Cycle
D/Q8

FULL OFFSET REGISTER ($\overline{\text { PAF }}$)							
	7	6	5	4	3	2	1

5th Parallel Offset Write/Read Cycle
D/Q8
D/Q0

FULL OFFSET REGISTER ($\overline{\mathrm{PAF}})$							
$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$

6th Parallel Offset Write/Read Cycle
D/Q8
D/Q0

IDT72V36110 — x9 Bus Width

6117 drw07a

Figure 3. Programmable Flag Offset Programming Sequence (Continued)

SERIAL PROGRAMMING MODE

If Serial Programming mode has been selected, as described above, then programming of $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ valuescanbeachieved by using a combination ofthe $\overline{L D}, \overline{S E N}, W C L K a n d S l i n p u t p i n s . ~ P r o g r a m m i n g ~ \overline{P A E}$ and $\overline{\text { PAF }}$ proceeds as follows: when $\overline{L D}$ and $\overline{\text { SEN }}$ are set LOW, data on the SI input are written, onebitforeachWCLKrisingedge, starting withtheEmpty OffsetLSB andending withthe Full OffsetMSB. A total of 32 bits forthe IDT72V36100 and 34 bits for the IDT72V36110. See Figure 15, Serial Loading of Programmable Flag Registers, for the timing diagram for this mode.

Using the serial method, individual registers cannot be programmed selectively. $\overline{\text { PAE }}$ and $\overline{\mathrm{PAF}}$ can show a valid status only after the complete set of bits (for all offset registers) has been entered. The registers can be reprogrammed as long as the complete set of new offsetbits is entered. When $\overline{\mathrm{LD}}$ is LOW and $\overline{\text { SEN }}$ is HIGH, no serial write to the registers can occur.

Write operations to the FIFO are allowed before and during the serial programming sequence. Inthis case, the programming of all offsetbits does nothave to occuratonce. Aselectnumber of bits can be writtento the Sl input and then, by bringing $\overline{\mathrm{LD}}$ and $\overline{\text { SEN }} \mathrm{HIGH}$, data can be writtento FIFO memory via Dn by toggling WEN. When $\overline{W E N}$ is brought HIGH with $\overline{\mathrm{LD}}$ and $\overline{\text { SEN }}$ restoredto a LOW, the next offset bit in sequence is written to the registers via SI. Ifaninterruption of serial programming is desired, itis sufficienteitherto set $\overline{\mathrm{LD}} \mathrm{LOW}$ and deactivate $\overline{\mathrm{SEN}}$ or to set $\overline{\mathrm{SEN}} \mathrm{LOW}$ and deactivate $\overline{\mathrm{LD}}$. Once $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ areboth restoredtoaLOWlevel, serial offset programming continues.

From the time serial programming has begun, neither programmableflag will be valid until the full set of bits required to fill all the offset registers has been written. Measuring fromthe rising WCLKedge thatachieves the above criteria; $\overline{\text { PAF }}$ will be valid after two more rising WCLK edges plustPAF, $\overline{\text { PAE }}$ will be valid after the next two rising RCLK edges plus tPAE plus tSKEW2.

It is only possible to readtheflag offsetvalues viathe parallel outputportQn.

PARALLELMODE

If Parallel Programming mode has been selected, asdescribedabove, then programming of $\overline{P A E}$ and $\overline{P A F}$ values canbe achieved by usinga combination of the $\overline{\mathrm{LD}}$, WCLK, $\overline{\mathrm{WEN}}$ and Dn input pins. Programming $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ proceedsasfollows: $\overline{\mathrm{LD}}$ and $\overline{W E N}$ mustbe setLOW. Forx36 bitinputbus width, dataonthe inputs Dnare written intothe Empty OffsetRegisteronthefirstLOW-to-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of WCLK, dataare writtenintothe Full Offset Register. Thethirdtransition ofWCLK writes, once again, to the Empty Offset Register. Forx18bit input bus width, dataonthe inputs Dnare written intothe Empty Offset RegisterLSB on the first LOW-to-HIGH transition of WCLK. Uponthe 2nd LOW-to-HIGH transition of WCLKdataare written intothe Empty Offset RegisterMSB. Thethirdtransition ofWCLKwritestotheFull OffsetRegisterLSB, thefourthtransition ofWCLKthen writes to the Full Offset RegisterMSB. The fifthtransition of WCLK writes once againtothe Empty OffsetRegisterLSB. Atotal offourwritestotheoffsetregisters is required to load values using ax18 input bus width. For an input bus width of $\times 9$ bits, atotal of sixwrite cycles to the offsetregisters is requiredtoload values. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 16, Parallel Loading of Programmable Flag Registers, for the timing diagramforthis mode.

The act of writing offsets in parallel employs a dedicated write offset register pointer. The act of reading offsets employs a dedicated read offset register pointer. The two pointers operate independently; however, a read and a write should notbe performed simultaneously to the offset registers. AMaster Reset initializes both pointers to the Empty Offset (LSB) register. A Partial Resethas no effect on the position of these pointers.

Write operations to the FIFO are allowed before and during the parallel programming sequence. Inthis case, the programming of all offset registers
does not have to occur at one time. One, two or more offset registers can be written and then by bringing $\overline{\mathrm{L}} \mathrm{D}$ HIGH, write operations can be redirected to the FIFOmemory. When $\overline{\mathrm{D}}$ is setLOW again, and $\overline{W E N}$ is LOW, thenextoffset register in sequence is writtento. As an alternative to holding $\overline{W E N}$ LOW and toggling $\overline{L D}$, parallel programming can also be interrupted by setting $\overline{L D}$ LOW and toggling $\overline{W E N}$.

Note that the status of a programmable flag ($\overline{\mathrm{PAE}}$ or $\overline{\mathrm{PAF}}$) output is invalid during the programming process. From the time parallel programming has begun, a programmable flag output will notbe valid until the appropriate offset word has been written to the register(s) pertaining to thatflag. Measuring from the rising WCLK edge that achieves the above criteria; $\overline{\mathrm{PAF}}$ will be valid after two more rising WCLKedges plustPAF, $\overline{\text { PAE }}$ will be valid after the nexttwo rising RCLK edges plus tPAE plus tSKEW2.

The act of reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers can be read onthe Qo-Qn pins when $\overline{\mathrm{D}}$ is setLOW and $\overline{\mathrm{REN}}$ is set LOW. For $x 36$ outputbus width, data are read via Qn from the Empty Offset Register on the first LOW-to-HIGH transition of RCLK. Uponthe second LOW-to-HIGHtransition of RCLK, dataare read from the Full Offset Register. The third transition of RCLK reads, once again, from the Empty Offset Register. Forx18 outputbus width, a total of four read cycles are required to obtain the values of the offset registers. Starting with the Empty Offset Register LSB and finishing withthe Full Offset RegisterMSB. Forx9 outputbus width, atotal ofsix read cycles mustbe performed onthe offset registers. See Figure 3, Programmable Flag OffsetProgramming Sequence. See Figure 17, Parallel Read of Programmable Flag Registers, for the timing diagramforthis mode.

It is permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption is accomplished by deasserting $\overline{\mathrm{REN}}, \overline{\mathrm{LD}}$, or both together. When $\overline{R E N}$ and $\overline{\mathrm{LD}}$ are restored to a LOW level, reading of theoffsetregisters continues where itleftoff. It should be noted, and care should be taken from the fact that when a parallel read of the flag offsets is performed, the data word that was present on the output lines Qn will be overwritten.

Parallel reading of the offset registers is always permitted regardless of which timing mode (IDT Standard or FWFT modes) has been selected.

RETRANSMITOPERATION

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normallatency and zerolatency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of memory.

Retransmitsetupis initiated by holding $\overline{R T}$ LOW during a rising RCLKedge. $\overline{R E N}$ and $\overline{W E N}$ mustbe HIGH before bringing $\overline{R T}$ LOW. Whenzerolatency is utilized, $\overline{\mathrm{REN}}$ does notneedtobeHIGHbeforebringing $\overline{\mathrm{RT}}$ LOW. Atleasttwowords, butnomorethanD-2 words should have been written into the FIFO, and read from the FIFO, between Reset (Master or Partial) and the time of Retransmit setup. $D=65,537$ for the IDT72V36100 and 131,073 for the IDT72V36110.

IfIDT Standard mode is selected, the FIFO will mark the beginning of the Retransmitsetup by setting $\overline{E F}$ LOW. The change inlevel will only be noticeable if $\overline{\mathrm{EF}}$ was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.

When $\overline{\text { EF }}$ goes HIGH, Retransmit setup is complete and read operations may begin starting withthefirstlocation in memory. Since IDT Standard mode is selected, every word read including the firstwordfollowing Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.

IfFWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting $\overline{O R} H I G H$. During this period, the internal read pointer is set to the first location of the RAM array.

When $\overline{\text { OR }}$ goes LOW, Retransmit setup is complete; at the same time, the contents ofthefirstlocationappearontheoutputs. SinceFWFTmodeis selected, the firstword appears on the outputs, no LOW on $\overline{\mathrm{REN}}$ is necessary. Reading all subsequent words requires a LOW on $\overline{\text { REN }}$ to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFTMode), forthe relevanttiming diagram.

For either IDT Standard mode or FWFT mode, updating of the $\overline{\mathrm{PAE}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{PAF}}$ flags begin with the rising edge of RCLK that $\overline{\mathrm{RT}}$ is setup. $\overline{\mathrm{PAE}}$ is
synchronizedto RCLK, thus onthe second rising edge of RCLKafter $\overline{\operatorname{RT}}$ is setup, the $\overline{\text { PAE }}$ flag will be updated. $\overline{\mathrm{HF}}$ is asynchronous, thus the rising edge of RCLK that $\overline{\mathrm{RT}}$ is setup will update $\overline{\mathrm{HF}}$. $\overline{\mathrm{PAF}}$ is synchronizedto WCLK, thus the second rising edge of WCLK that occurs tSKEW after the rising edge of RCLK that $\overline{\mathrm{RT}}$ is setup will update $\overline{\mathrm{PAF}} . \overline{\mathrm{RT}}$ is synchronized to RCLK.

The Retransmit function has the option of two modes of operation, either "normal latency" or "zero latency". Figure 11 and Figure 12 mentioned previously, relate to "normal latency". Figure 13 and Figure 14 show "zero latency" retransmit operation. Zero latency basically means that the first data word to be retransmitted, is placed onto the output register with respect to the RCLKpulse that initiated the retransmit.

SIGNAL DESCRIPTION

INPUTS:

DATA IN (D0 - Dn)

Data inputs for 36-bit wide data (D0-D35), data inputs for 18-bitwide data (D0-D17) or data inputs for 9-bit wide data (D0-D8).

CONTROLS:

MASTER RESET ($\overline{\text { MRS }}$)

AMasterResetis accomplishedwheneverthe $\overline{\mathrm{MRS}}$ inputistakentoaLOW state. This operation sets the internal read and write pointers to the firstlocation of the RAM array. $\overline{\mathrm{PAE}}$ will goLOW, $\overline{\mathrm{PAF}}$ will go HIGH, and $\overline{\mathrm{HF}}$ will go HIGH.

If FWFT/SI is LOW during Master Reset then the IDT Standard mode, along with $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ are selected. $\overline{\mathrm{EF}}$ will go LOW and $\overline{\mathrm{FF}}$ will go HIGH . If FWFT/SI is HIGH, then the FirstWord Fall Through mode(FWFT), along with $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$, are selected. $\overline{\mathrm{OR}}$ will go HIGH and $\overline{\mathrm{R}}$ will go LOW.

All control settings such as OW, IW, BM, $\overline{B E}, ~ R M, ~ P F M ~ a n d ~ I P ~ a r e ~ d e f i n e d ~ d ~$ during the Master Reset cycle.

During aMaster Reset, theoutput register is initializedto allzeroes. AMaster Reset is required after power up, before a write operation cantake place. $\overline{\mathrm{MRS}}$ is asynchronous.

See Figure 5, Master Reset Timing, for the relevant timing diagram.

PARTIAL RESET ($\overline{\text { PRS }}$)

A Partial Reset is accomplished whenever the $\overline{\text { PRS }}$ inputis takentoaLOW state. As in the case of the Master Reset, the internal read and write pointers are setto the firstlocation of the RAM array, $\overline{\text { PAE }}$ goes LOW, $\overline{\mathrm{PAF}}$ goes HIGH , and $\overline{\mathrm{HF}}$ goes HIGH.

Whichever mode is active at the time of Partial Reset, IDT Standardmode orFirstWord Fall Through, thatmode will remainselected. Ifthe IDTStandard mode is active, then $\overline{F F}$ will go HIGH and $\overline{\mathrm{EF}}$ will go LOW. If the FirstWord Fall Through mode is active, then $\overline{\mathrm{OR}}$ will go HIGH , and $\overline{\mathrm{R}}$ will go LOW.

Following Partial Reset, all values held in the offset registers remain unchanged. The programming method (parallel or serial) currently active at the time of Partial Reset is also retained. The output register is initialized to all zeroes. $\overline{\mathrm{PRS}}$ is asynchronous.

A Partial Reset is useful for resetting the device during the course of operation, when reprogramming programmable flag offsetsettings may notbe convenient.

See Figure 6, Partial Reset Timing, for the relevant timing diagram.

ASYNCHRONOUS WRITE ($\overline{\text { ASYW }})$

The write portcan be configured for eitherSynchronous or Asynchronous mode of operation. If during Master Reset the $\overline{\text { ASYW input is LOW, then }}$ Asynchronous operation of the write portwill be selected. During Asynchronous operation of the write port the WCLK input becomes WR input, this is the Asynchronous write strobe input. A rising edge on WR will write data present on the Dn inputs intothe FIFO. ($\overline{\mathrm{WEN}}$ must be tied LOW when using the write port in Asynchronous mode).

When the write port is configured for Asynchronous operation the full flag ($\overline{\mathrm{FF}}$) operates in an asynchronous manner, that is, the full flag will be updated based inboth a write operation and read operation. Note, if Asynchronous mode is selected, FWFT is not permissable. Refer to Figures 23, 24, 27 and 28 for relevanttiming and operational waveforms.

ASYNCHRONOUS READ ($\overline{\text { ASYR }}$)

The read portcan be configured foreither Synchronous or Asynchronous mode of operation. If during a Master Reset the $\overline{\text { ASYR }}$ input is LOW, then Asynchronous operation of the read port will be selected. During Asynchronous operation of the read port the RCLK input becomes RD input, this is the Asynchronous read strobe input. A rising edge on RD will read data from the FIFO via the output register and Qn port. (REN must be tied LOW during Asynchronous operation of the read port).

The $\overline{\mathrm{OE}}$ input provides three-state control of the Qn output bus, in an asynchronous manner.

When the read port is configured for Asynchronous operation the device mustbe operating on IDT standardmode, FWFT mode is not permissible if the read portis Asynchronous. The Empty Flag ($\overline{\mathrm{EF}}$) operates in an Asynchronous manner, that is, the empty flag will be updated based on both a read operation and a write operation. Refer to figures25,26,27 and 28 for relevanttiming and operational waveforms.

RETRANSMIT ($\overline{\mathrm{RT}}$)

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zerolatency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting atthe beginning of the memory.

Retransmitsetup is initiated by holding $\overline{\mathrm{RT}}$ LOW during a rising RCLKedge. $\overline{\mathrm{REN}}$ and $\overline{\mathrm{WEN}}$ mustbe HIGH before bringing $\overline{\mathrm{RT}}$ LOW. Whenzerolatency is utilized, $\overline{R E N}$ does not need to be HIGH before bringing $\overline{R T}$ LOW.

If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmitsetup by setting EF LOW. The change inlevel will only be noticeable if $\overline{E F}$ was HIGH before setup. During this period, the internal read pointer is initialized to the firstlocation of the RAM array.

When $\overline{\text { EF }}$ goes HIGH, Retransmit setup is complete and read operations may begin starting with the firstlocation in memory. Since IDT Standardmode is selected, every word read including the first word following Retransmit setup requires a LOW on $\overline{\operatorname{REN}}$ to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.

IfFWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting $\overline{O R}$ HIGH. During this period, the internal read pointer is set to the first location of the RAM array.

When $\overline{\text { OR }}$ goes LOW, Retransmit setup is complete; at the same time, the contents ofthefirstlocationappearontheoutputs. SinceFWFTmodeisselected, the firstword appears on the outputs, no LOW on $\overline{R E N}$ is necessary. Reading all subsequent words requires a LOW on $\overline{\text { REN }}$ to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFTMode), for the relevanttiming diagram.

In Retransmit operation, zero latency mode can be selected using the RetransmitMode(RM) pin during a Master Reset. This can be applied to both IDT Standard mode and FWFT mode.

FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)

This is a dual purpose pin. During Master Reset, the state of the FWFT/ Sl input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}})$ to indicate whether or not there are any words present in the FIFO memory. Italso uses the Full Flag function $(\overline{\mathrm{FF}})$ to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable ($\overline{\text { REN }}$) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready $(\overline{\mathrm{OR}})$ to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready ($\overline{\mathrm{R}})$ to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, thefirstword writtentoanempty FIFO goesdirectly to Qnafterthree RCLK rising edges, $\overline{\mathrm{REN}}=$ LOW is not necessary. Subsequent words must be accessed using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

After Master Reset, FWFT/Slacts as a serial inputforloading $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ offsets into the programmable registers. The serial inputfunction can only be used when the serial loading method has been selected during Master Reset. Serial programming using the FWFT/SI pinfunctions the same way in bothIDT Standard and FWFT modes.

WRITE STROBE \& WRITE CLOCK (WR/WCLK)

If Synchronous operation of the write porthas been selected via ASYW, this inputbehaves as WCLK.

A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times must be met with respect to the LOW-to-HIGH transition of the WCLK. Itis permissible to stop the WCLK. Note that whileWCLKisidle, the $\overline{F F} /$ $\overline{\mathrm{IR}}, \overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ flags will not be updated. (Note thatWCLK is only capable of updating $\overline{\mathrm{HF}}$ flag to LOW). The Write and Read Clocks can either be independentorcoincident.

IfAsynchronous operationhas been selected this inputisWR (writestrobe). Data is Asynchronously written into the FIFO viathe Dninputs wheneverthere is a rising edge on WR. In this mode the WEN input must be tied LOW.

WRITE ENABLE ($\overline{\text { WEN }}$)

Whenthe $\overline{W E N}$ input is LOW, datamay beloaded into the FIFORAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

When $\overline{W E N}$ is $H I G H$, nonew data is written inthe RAM array oneachWCLK cycle.

To prevent data overflow in the IDT Standard mode, $\overline{\mathrm{FF}}$ will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{FF}}$ will go HIGH allowing a write to occur. The $\overline{\mathrm{FF}}$ is updated by two WCLK cycles + tSKEW after the RCLK cycle.

To prevent data overflow in the FWFT mode, $\overline{\mathrm{IR}}$ will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{R}}$ will go LOW allowing a write to occur. The $\overline{\mathrm{R}}$ flag is updated by two WCLK cycles + tSKEW after the valid RCLK cycle.
$\overline{\text { WEN }}$ is ignored whenthe FIFO is full in eitherFWFTorIDTStandardmode.
If Asynchronous operation of the write porthas been selected, then WEN mustbe held active, (tied LOW).

READ STROBE \& READ CLOCK (RD/RCLK)

If Synchronous operation of the read porthas been selected via $\overline{\text { ASYR }}$, this inputbehaves as RCLK. A read cycle is initiated on the rising edge of the RCLK input. Data can be read on the outputs, on the rising edge of the RCLK input. Itis permissible to stopthe RCLK. Notethatwhile RCLKisidle, the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{HF}}$ flags will not be updated. (Note that RCLK is only capable of updating
the $\overline{\mathrm{HF}}$ flag to HIGH). The Write and Read Clocks can be independent or coincident.

If Asynchronous operation has been selected this input is RD (Read Strobe) . Data is Asynchronously read from the FIFO via the output register whenever there is a rising edge on RD. In this mode the $\overline{R E N}$ input must be tied LOW. The $\overline{\mathrm{OE}}$ inputis used to provide Asynchronous control of the threestateQnoutputs.

READ ENABLE ($\overline{R E N}$)

WhenReadEnable isLOW, datais loadedfromthe RAM array intotheoutput register on the rising edge of every RCLK cycle if the device is not empty.

When the $\overline{R E N}$ input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs Qo-Qn maintain the previous data value.

In the IDT Standard mode, every word accessed at Qn, including the first word written to an empty FIFO, mustbe requested using $\overline{R E N}$. When the last word has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}})$ will go LOW, inhibiting further read operations. $\overline{\text { REN }}$ is ignored whentheFIFO is empty. Once a write is performed, $\overline{\mathrm{EF}}$ will go HIGH allowing a read to occur. The $\overline{\mathrm{EF}}$ flagis updated by two RCLK cycles + tSKEw after the valid WCLK cycle.

IntheFWFTmode, thefirstword writtentoanempty FIFO automatically goes to the outputs Qn, on the third valid LOW-to-HIGHtransition of RCLK + tSKEW after the firstwrite. $\overline{\mathrm{REN}}$ does notneed to be asserted LOW. In orderto access all otherwords, a read mustbeexecutedusing $\overline{\mathrm{REN}}$. The RCLKLOW-to-HIGH transition after the lastword has been read from the FIFO, Output Ready ($\overline{\mathrm{OR}})$ will go HIGH with a true read (RCLK with $\overline{R E N}=L O W$), inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored when the FIFO is empty.

IfAsynchronous operation of the Read port has been selected, then $\overline{R E N}$ mustbeheld active, (tied LOW).

SERIAL ENABLE ($\overline{\operatorname{SEN}}$)

The $\overline{\text { SEN }}$ input is an enable used only for serial programming of the offset registers. The serial programming method must be selected during Master Reset. $\overline{\text { SEN }}$ is always used in conjunction with $\overline{\mathrm{LD}}$. When these lines are both LOW, dataattheSl inputcanbeloadedintothe program registeronebitforeach LOW-to-HIGHtransition of WCLK.

When $\overline{\text { SEN }}$ is HIGH, the programmable registers retains the previous settings and no offsets are loaded. $\overline{\text { SEN }}$ functions the same way in both IDT Standard and FWFT modes.

OUTPUT ENABLE ($\overline{O E}$)

When Output Enable is enabled (LOW), the parallel outputbuffers receive datafrom the output register. When $\overline{\text { OE }}$ is HIGH, the output databus $\left(\mathrm{Qn}_{n}\right)$ goes into ahighimpedance state.

LOAD ($\overline{\mathrm{LD}})$

This is a dual purpose pin. During Master Reset, the state of the \bar{L} input, along with FSELO and FSEL1, determines one of eight default offset values for the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table2). After Master Reset, $\overline{\mathrm{LD}}$ enables write operationsto and read operations from the offset registers. Only theoffsetloading method currently selected canbe usedto write to the registers. Offset registers can be read only in parallel.

AfterMaster Reset, the $\overline{L D}$ pin is used to activate the programming process of the flag offset values $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$. Pulling $\overline{\mathrm{L}} \mathrm{LOW}$ will begin a serial loading or parallel load or read of these offset values.

BUS-MATCHING (BM, IW, OW)

Thepins BM, IW and OW are used to definethe inputand outputbus widths. During Master Reset, the state of these pins is used to configure the device bus sizes. See Table 1 for control settings. All flags will operate on the word/byte size boundary as defined by the selection of bus width. See Figure 4 for BusMatching Byte Arrangement.

BIG-ENDIAN/LITTLE-ENDIAN ($\overline{B E}$)

During Master Reset, a LOW on $\overline{B E}$ will select Big-Endian operation. A HIGH on $\overline{\mathrm{BE}}$ during Master Resetwill select Little-Endianformat. This function is useful whenthe following inputto outputbus widths are implemented: x36 to $x 18, x 36$ to $\times 9, x 18$ to 36 and $x 9$ to $\times 36$. If Big-Endian mode is selected, then themostsignificantbyte (word) ofthelong word written intotheFIFO will be read out of the FIFOfirst, followed by the leastsignificantbyte. IfLittle-Endianformat is selected, then the leastsignificant byte of the long word written into the FIFO will be read out first, followed by the mostsignificant byte. The mode desired is configured during master reset by the state of the Big-Endian ($\overline{\mathrm{BE}})$ pin. See Figure 4 for Bus-Matching Byte Arrangement.

PROGRAMMABLE FLAG MODE (PFM)

During Master Reset, a LOW on PFM will select Asynchronous Programmableflagtiming mode.AHIGH on PFM will selectSynchronous Programmable flagtiming mode. If asynchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, LOW during $\overline{\mathrm{MRS}}$), the $\overline{\mathrm{PAE}}$ is asserted LOW onthe LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. Similarly, the $\overline{\mathrm{PAF}}$ is asserted LOW ontheLOW-to-HIGHtransition ofWCLK and $\overline{\text { PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK. }}$

If synchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected (PFM, HIGH during MRS), the $\overline{\mathrm{PAE}}$ is asserted and updated on the rising edge of RCLK only and notWCLK. Similarly, $\overline{\text { PAF }}$ is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during master resetby the state of the Programmable Flag Mode (PFM) pin.

INTERSPERSED PARITY (IP)

DuringMaster Reset, aLOW on IP will selectNon-InterspersedParity mode. A HIGH will select Interspersed Parity mode. The IP bitfunction allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, thenthe FIFO will assume that the parity bits are located in bit position D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D28 are is assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effectduring parallel programming ofthe offsetregisters. Itdoes noteffectthedata written to and read from the FIFO.

OUTPUTS:

FULL FLAG ($\overline{F F / R}$)

This is adual purposepin. InIDTStandardmode, the Full Flag (汭) function is selected. When the FIFO is full, $\overline{\mathrm{FF}}$ will go LOW, inhibiting further write operations. When $\overline{F F}$ is HIGH, the FIFO is not full. If no reads are performed after a reset (either $\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}}$), $\overline{\mathrm{FF}}$ will go LOW after D writes to the FIFO ($D=65,536$ for the IDT72V36100 and 131,072 for the IDT72V36110). See Figure 7, Write Cycle and Full Flag Timing (IDT Standard Mode), for the relevanttiming information.

In FWFT mode, the Input Ready ($\overline{\mathrm{IR}})$ function is selected. $\overline{\mathrm{R}}$ goes LOW when memory space is available for writing in data. When there is no longer
anyfreespace left, $\overline{\mathbb{R}}$ goes HIGH, inhibitingfurther write operations. If no reads are performed after a reset (either $\overline{M R S}$ or $\overline{P R S}$), $\overline{\mathrm{R}}$ will goHIGH afterD writes totheFIFO($D=65,537$ fortheIDT72V36100 and 131,073fortheIDT72V36110). See Figure 9, Write Timing (FWFTMode), for the relevanttiming information.

The \bar{R} status not only measures the contents ofthe FIFO memory, butalso counts the presence of a word in the output register. Thus, in FWFT mode, the total number of writes necessary to deassert $\overline{\mathrm{R}}$ is one greater than needed to assert $\overline{F F}$ in IDT Standard mode.
$\overline{F F} / \bar{R}$ is synchronous and updated on the rising edge of WCLK. $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ are double register-buffered outputs.

EMPTY FLAG($\overline{E F} / \overline{O R}$)

This is a dual purpose pin. In the IDT Standard mode, the Empty Flag ($\overline{\mathrm{EF}}$) function is selected. Whenthe FIFO is empty, $\overline{\mathrm{EF}}$ will go LOW, inhibiting further read operations. When $\overline{\text { EF }}$ is HIGH, the FIFO is notempty. See Figure 8, Read Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for the relevanttiming information.
 at the same time that the first word written to an empty FIFO appears valid on the outputs. $\overline{O R}$ stays LOW after the RCLKLOW to HIGH transition that shifts the last word from the FIFO memory to the outputs. $\overline{\text { OR goes HIGH only with }}$ a true read (RCLK with $\overline{R E N}=L O W$). The previous data stays at the outputs, indicating the lastword was read. Furtherdata reads are inhibiteduntil $\overline{\mathrm{RR}}$ goes LOW again. SeeFigure 10, Read Timing (FWFTMode), forthe relevanttiming information.
$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ is synchronous and updated on the rising edge of RCLK.
In IDT Standard mode, $\overline{E F}$ is a double register-buffered output. In FWFT mode, $\overline{O R}$ is a triple register-buffered output.

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\text { PAF }}$)

The Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) will go LOW when the FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after reset $(\overline{\mathrm{MRS}}), \overline{\mathrm{PAF}}$ will go LOW after ($\mathrm{D}-\mathrm{m}$) words are written to the FIFO. The $\overline{\text { PAF }}$ will goLOW after ($65,536-\mathrm{m}$) writes forthe IDT72V36100 and ($131,072-\mathrm{m}$) writes for the IDT72V36110. The offset " m " is the full offset value. The default setting for this value is stated in the footnote of Table 1.

In FWFT mode, the $\overline{\text { PAF }}$ will go LOW after ($65,537-\mathrm{m}$) writes for the IDT72V36100 and ($131,073-\mathrm{m}$) writes for the IDT72V36110, where m is the full offset value. The default setting for this value is stated in Table 2.

See Figure 18, Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFTMode), for the relevant timing information.

If asynchronous $\overline{\text { PAF }}$ configuration is selected, the $\overline{\mathrm{PAF}}$ is asserted LOW ontheLOW-to-HIGHtransition oftheWriteClock(WCLK). $\overline{\text { PAF is resetto HIGH }}$ ontheLOW-to-HIGHtransition of the ReadClock (RCLK). Ifsynchronous $\overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAF}}$ is updated on the rising edge of WCLK. See Figure 20, Asynchronous Almost-Full Flag Timing (IDT Standard and FWFT Mode).

PROGRAMMABLE ALMOST-EMPTYFLAG($\overline{\text { PAE }})$

The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go LOW when the FIFO reaches the almost-empty condition. In IDT Standard mode, $\overline{\text { PAE }}$ will goLOW when there are n words or less in the FIFO. The offset " n " is the empty offset value. The default setting for this value is stated in the footnote of Table 1.

In FWFT mode, the PAE will go LOW when there are $n+1$ words or less in the FIFO. The default setting for this value is stated in Table 2.

See Figure 19, Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

If asynchronous $\overline{\mathrm{PAE}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted LOW ontheLOW-to-HIGHtransition of the ReadClock (RCLK). $\overline{\text { PAE is resetto HIGH }}$ ontheLOW-to-HIGHtransition of theWriteClock (WCLK). Ifsynchronous $\overline{\text { PAE }}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is updated onthe rising edge of RCLK. See Figure 21, Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode).

HALF-FULL FLAG ($\overline{\mathrm{HF}}$)

Thisoutputindicatesahalf-fullFIFO. The risingWCLKedgethatfillstheFIFO beyondhalf-full sets $\overline{\mathrm{F}} \mathrm{LOW}$. Theflagremains LOW until the differencebetween the write and read pointers becomes less than or equal to half of the total depth of the device; the rising RCLK edge that accomplishes this condition sets $\overline{\mathrm{HF}}$ HIGH.

In IDT Standardmode, ifno reads are performed after reset($\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}})$, $\overline{\text { HF }}$ will go LOW after ($\mathrm{D} / 2+1$) writes to the FIFO, where $\mathrm{D}=65,536$ for the IDT72V36100 and 131,072 for the IDT72V36110.

In FWFT mode, if no reads are performed after reset ($\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}})$, $\overline{\mathrm{HF}}$ will go LOW after ($D-1 / 2+2$) writes to the FIFO, where $D=65,537$ for the IDT72V36100 and 131,073 for the IDT72V36110.

See Figure 22, Half-Full Flag Timing (IDT Standard and FWFT Modes), for the relevanttiming information. Because $\overline{\mathrm{HF}}$ is updated by both RCLK and WCLK, itis considered asynchronous.

DATA OUTPUTS (Qo-Qn)

(Q0-Q35) are data outputs for36-bit wide data, (Q0-Q17) are data outputs for 18-bit wide data or (Q0-Q8) are data outputs for 9-bit wide data.

BYTE ORDER ON OUTPUT POR

$\overline{B E}$	BM	IW	OW
X	L	L	L

$\overline{B E}$	BM	IW	OW
L	H	L	L

$\overline{B E}$	BM	IW	OW
\mathbf{H}	H	L	L

$\overline{\mathrm{BE}}$	BM	IW	OW
L	H	L	H

$\overline{\mathrm{BE}}$	BM	IW	OW
H	H	L	H

(b) $\times 36$ INPUT to $\times 18$ OUTPUT - BIG-ENDIAN

(c) $\times 36$ INPUT to $\times 18$ OUTPUT - LITTLE-ENDIAN

Figure 4. Bus-Matching Byte Arrangement

BYTE ORDER ON INPUT PORT:

$\overline{\mathrm{BE}}$	BM	IW	OW
H	H	H	L

Read from FIFO

BYTE ORDER ON INPUT PORT:
BYTE ORDER ON OUTPUT

$\overline{B E}$	BM	IW	OW
\mathbf{L}	H	\mathbf{H}	\mathbf{H}

$\overline{\mathrm{BE}}$	BM	IW	OW
H	H	H	H

Read from FIFO

Read from FIFO
(b) x9 INPUT to x36 OUTPUT - LITTLE-ENDIAN

D26-D18

4th: Write to FIFO
(a) x9 INPUT to x36 OUTPUT - BIG-ENDIAN

Figure 4. Bus-Matching Byte Arrangement (Continued)

Figure 5. Master Reset Timing

Figure 6. Partial Reset Timing

NOTES:

1. tskEw is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH (after one WCLK cycle pus twFF). If the time between the rising edge of the RCLK and the rising edge of the WCLK is less than tskEw1, then the $\overline{F F}$ deassertion may be delayed one extra WCLK cycle.
2. $\overline{\mathrm{D}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{EF}}=\mathrm{HIGH}$

Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)

NOTES:

1. tSKEW 1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{E F}$ will go HIGH (after one RCLK cycle plus treF). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskeww, then EF deassertion may be delayed one extra RCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}$.
3. First data word latency $=$ tskew $1+1^{*}$ TrCLK + tref.

Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)

NOTES:

1. tskEw is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{OR}}$ will go LOW after two RCLK cycles plus tref. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskEW1, then $\overline{\mathrm{OR}}$ assertion may be delayed one extra RCLK cycle.
2. tskEw2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\text { PAE }}$ will go HIGH after one RCLK cycle plus tPAES. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskEw2, then the $\overline{P A E}$ deassertion may be delayed one extra RCLK cycle.
3. $\overline{L D}=H I G H, \overline{O E}=L O W$
4. $n=\overline{\mathrm{PAE}}$ offset, $m=\overline{\mathrm{PAF}}$
5. $n=\overline{\text { PAE offset, }} m=\overline{\mathrm{PAF}}$ offset and $\mathrm{D}=$ maximum FIFO depth.
6. $\mathrm{D}=65,537$ for the IDT72V36100 and 131,073 for the IDT72
7. $D=65,537$ for the IDT72V 36100 and 131,073 for the IDT72V36110.
8. First data word latency $=$ tskEw $+2^{*}$ TRCLK + trEF.
Figure 9. Write Timing (First Word Fall Through Mode)

NOTES:

1. Retransmit setup is complete after $\overline{\mathrm{EF}}$ returns HIGH , only then can a read operation begin.
2. $\overline{\mathrm{O}}=\mathrm{LOW}$.
3. $\mathrm{W}_{1}=$ first word written to the FIFO after Master Reset, $\mathrm{W}_{2}=$ second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\text { FF }}$ will be HIGH throughout the Retransmit setup procedure. $D=65,536$ for the IDT72V36100 and 131,072 for the IDT72V36110.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS.

Figure 11. Retransmit Timing (IDT Standard Mode)

NOTES:

1. Retransmit setup is complete after $\overline{\mathrm{OR}}$ returns LOW.
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\mathbb{R}}$ will be LOW throughout the Retransmit setup procedure. $\mathrm{D}=65,537$ for the IDT72V36100 and 131,073 for the IDT72V36110.
3. $\overline{\mathrm{O}}=\mathrm{LOW}$.
4. $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}=$ first, second and third words written to the FIFO after Master Reset.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS.

Figure 12. Retransmit Timing (FWFT Mode)

NOTES:

1. If the part is empty at the point of Retransmit, the empty flag ($\overline{\mathrm{EF}}$) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.
2. $\overline{\mathrm{OE}}=\mathrm{LOW}$.
3. $\mathrm{W}_{1}=$ first word written to the FIFO after Master Reset, $\mathrm{W}_{2}=$ second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\mathrm{FF}}$ will be HIGH throughout the Retransmit setup procedure. $D=65,536$ for the IDT72V36100 and 131,072 for the IDT72V36110.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set LOW during MRS.

Figure 13. Zero Latency Retransmit Timing (IDT Standard Mode)

NOTES:

1. If the part is empty at the point of Retransmit, the output ready flag ($\overline{\mathrm{OR}})$ will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output. 2. No more than D-2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, $\overline{\mathrm{R}}$ will be LOW throughout the Retransmit setup procedure. $D=65,537$ for the IDT72V36100 and 131,073 for the IDT72V36110.
2. $\overline{O E}=L O W$.
3. $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}=$ first, second and third words written to the FIFO after Master Reset.
4. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
5. RM is set LOW during MRS.

Figure 14. Zero Latency Retransmit Timing (FWFT Mode)

NOTE:

1. $X=15$ for the IDT72V36100 and $X=16$ for the IDT72V36110.

Figure 15. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

1. This timing diagram illustrates programming with an input bus width of 36 bits.

Figure 16. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

Figure 17. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)

Figure 18. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $n=\overline{\mathrm{PAE}}$ offset.
2. For IDT Standard mode
3. For FWFT mode.
4. tskewz is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\text { PAE }}$ will go HIGH (after one RCLK cycle plus tPaES). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskewz, then the PAE deassertion may be delayed one extra RCLK cycle.
5. $\overline{\text { PAE }}$ is asserted and updated on the rising edge of WCLK only.
6. Select this mode by setting PFM HIGH during Master Reset.

Figure 19. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset.
2. $\mathrm{D}=$ maximum FIFO Depth.

In IDT Standard Mode: $\mathrm{D}=65,536$ for the IDT72V36100 and 131,072 for the IDT72V36110. In FWFT Mode: $\mathrm{D}=65,537$ for the IDT72V36100 and 131,073 for the IDT72V36110.
3. $\overline{\text { PAF }}$ is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.
4. Select this mode by setting PFM LOW during Master Reset.

Figure 20. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $n=\overline{\mathrm{PAE}}$ offset.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. $\overline{\text { PAE }}$ is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.
5. Select this mode by setting PFM LOW during Master Reset.

Figure 21. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. In IDT Standard mode: $D=$ maximum FIFO depth. $D=65,536$ for the IDT72V36100 and 131,072 for the IDT72V36110.
2. In FWFT mode: $D=$ maximum FIFO depth. $D=65,537$ for the IDT72V36100 and 131,073 for the IDT72V36110.

Figure 22. Half-Full Flag Timing (IDT Standard and FWFT Modes)

NOTE:

1. $\overline{O E}=L O W$ and $\overline{W E N}=L O W$.

Figure 23. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}$ and $\overline{\mathrm{WEN}}=\mathrm{LOW}$.

Figure 24. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTE:

1. $\overline{O E}=L O W$ and $\overline{R E N}=L O W$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 25. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}$ and $\overline{\mathrm{REN}}=\mathrm{LOW}$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 26. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{O E}=L O W, \overline{W E N}=L O W$, and $\overline{\text { REN }}=$ LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 27. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{WEN}}=\mathrm{LOW}$, and $\overline{\mathrm{REN}}=\mathrm{LOW}$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 28. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

OPTIONAL CONFIGURATIONS

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions in IDT Standard mode and the $\overline{\mathrm{R}}$ and $\overline{O R}$ functions inFWFTmode. Because of variations in skewbetween RCLK and WCLK, it is possible for $\overline{E F} / \overline{F F}$ deassertion and $\overline{\mathrm{R}} / \overline{\mathrm{OR}}$ assertion to vary
by one cycle between FIFOs. In IDT Standard mode, such problems can be avoided by creating composite flags, that is, ANDing EF of every FIFO, and separately ANDing FF of every FIFO. InFWFT mode, composite flags can be created by ORing OR of every FIFO, and separately ORing \bar{R} of every FIFO.

Figure 29 demonstrates a width expansion using two IDT72V36100/ 72V36110 devices. Do-D35 from each deviceforma72-bitwide inputbus and Q0-Q35 from each device form a 72-bit wide output bus. Any word width can be attained by adding additional IDT72V36100/72V36110 devices.

NOTES:

1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.
2. Do not connect any output control signals directly together.
3. FIFO \#1 and FIFO \#2 must be the same depth, but may be different word widths.

Figure 29. Block Diagram of 65,536 x 72 and 131,072 x 72 Width Expansion

Figure 30. Block Diagram of $131,072 \times 36$ and $262,144 \times 36$ Depth Expansion

DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)

The IDT72V36100 can easily be adapted to applications requiring depths greaterthan 65,536 and 131,072 forthe IDT72V 36110 , with an 36 -bitbus width. InFWFT mode, the FIFOs can be connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides a total depth equivalent to the sum of the depths associated with each singleFIFO. Figure 30 shows a depth expansion using two IDT72V36100/72V36110 devices.

Care should betakentoselectFWFTmodeduring Master Resetfor all FIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain - no read operation is necessarybutthe RCLK ofeachFIFOmustbefree-running. Eachtimethedata word appears at the outputs of one FIFO, that device's $\overline{\text { OR line goes LOW, }}$ enabling a write to the next FIFO in line.

For an empty expansion configuration, the amount of time ittakes for $\overline{\mathrm{OR}}$ of the lastFIFO in the chaintogoLOW (i.e.valid datato appearonthe lastFIFO's outputs) after a word has been written to the firstFIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{\star}\left(4^{\star} \text { transfer clock }\right)+3^{\star} \text { TRCLK }
$$

whereNisthe numberofFIFOs inthe expansionand TrCLKisthe RCLK period. Note that extra cycles should be added for the possibility that the tSKEW1
specificationis notmetbetweenWCLKandtransferclock, orRCLKandtransfer clock, for the $\overline{\mathrm{OR}}$ flag.
The "ripple down" delay is only noticeable forthefirstword writtento anempty depth expansion configuration. There will be no delay evident for subsequent words written to the configuration.
The first free location created by reading from a full depth expansion configuration will "bubble up" from the lastFIFO to the previous one untilitfinally moves into the firstFIFO of the chain. Eachtime afree location is createdinone FIFO of the chain, that FIFO's \bar{R} line goes LOW, enabling the preceding FIFO to write a word to fill it.
Forafull expansion configuration, the amount of time ittakes for \bar{R} of thefirst FIFO in the chain to go LOW after a word has been read from the lastFIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{\star}\left(3^{\star} \text { transfer clock }\right)+2 \text { TwcLK }
$$

where N is the number of FIFOs in the expansion and TwCLK is the WCLK period. Notethatextracyclesshould beaddedforthe possibility thatthe tSKEW1 specificationis notmetbetweenRCLK andtransferclock, orWCLKandtransfer clock, for the $\overline{\mathrm{R}}$ flag.
The TransferClock line should be tied to eitherWCLK or RCLK, whichever is faster. Boththese actions resultin data moving, as quickly as possible, tothe end of the chain and free locations to the beginning of the chain.

NOTE:

1. During power up, $\overline{\operatorname{TRST}}$ could be driven low or not be used since the JTAG circuit resets automatically. $\overline{\text { TRST }}$ is an optional JTAG reset.

Figure 31. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	$\begin{aligned} & \text { IDT72V36100 } \\ & \text { IDT72V36110 } \end{aligned}$		
			Min.	Max.	Units
DataOutput	tDO ${ }^{(1)}$		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	10	-	ns
	tD		10	-	

NOTE:

1. 50 pf loading on external output signals.

J TAG AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Vcc}=3.3 \mathrm{~V} \pm 5 \%\right.$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions			
			Min.	Max.	Units
JTAG Clock Input Period	tTCK	-	100	-	ns
JTAG Clock HIGH	tJTCKH	-	40	-	ns
JTAG Clock Low	tJTCKL	-	40	-	ns
JTAG Clock Rise Time	tJTCKR	-	-	$5^{(1)}$	ns
JTAG Clock Fall Time	tJTCKF	-	-	$5^{(1)}$	ns
JTAGReset	tJRST	-	50	-	ns
JTAG Reset Recovery	tJRSR	-	50	-	ns

NOTE:

1. Guaranteed by design.

J TAGINTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72V36100/72V36110 incorporates the necessary tap controller and modified pad cells to implement the JTAG facility.

NotethatIDT provides appropriate Boundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of four basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a complete description refertothe IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 32. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offourinputports(TCLK, TMS, TDI, TRST) and one output port (TDO).

THE TAP CONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.

NOTE:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP.

Figure 33. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram.

All state transitions withinthe TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controller takes precedence over the Queue and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset All testlogic is disabled in this controller state enabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state of the controller is, the Test-Logic-Resetstate canbe entered by holding TMSathigh and pulsing TCK five times. This is the reason why the Test Reset ($\overline{\mathrm{TRST}}$) pin is optional.

Run-Test-Idle In this controllerstate, the testlogic in the IC is active only if certaininstructions are present. For example, if aninstruction activates the self test, then it will be executed when the controller enters this state. The testlogic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the DataPath or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the Instruction Pathis made. TheControllercan returntotheTest-Logic-Resetstate otherwise.

Capture-IR Inthis controllerstate, the shift register bank in the Instruction Register parallel loads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be "01".
Shift-IR In this controller state, the instruction register gets connected betweenTDI andTDO, andthe captured patterngets shifted oneach risingedge of TCK. The instructionavailable onthe TDI pinisalso shifted intothe instruction register.
Exit1-IRThis is a controller state where a decisionto enter eitherthePauseIR state or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.

Exit2-DR This is a controller state where a decision to enter either the ShiftIR state or Update-IR state is made.
Update-IR Inthis controllerstate, the instruction inthe instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.
Capture-DR Inthis controller state, the data is parallel loaded in to the data registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially intothe processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registertobeaccessed, orboth. The instruction shiftedintothe registeris latched at the completion of the shifting process when the TAP controller is at UpdateIRstate.

The instruction register must contain 4 bitinstruction register-based cells which canhold instruction data. These mandatory cells are located nearestthe serial outputs they are the least significantbits.

TEST DATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. Fora completedescription, refertothe IEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI to TDO. Itcontains asingle stage shiftregisterfor a minimumlengthinserial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI beloaded into or read out of the processor input/output ports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined throughthe TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72V36100/72V36110, the Part Number field contains the following values:

Device	Part\# Field
IDT72V36100	04DE
IDT72V36110	04DF

31 (MSB)	2827	12	1	O(LSB)
Version (4 bits) OX0	Part Number (16-bit)	Manufacturer ID (11-bit) 0X33	1	

IDT72V36100/72V36110 JTAG Device Identification Register

JTAG INSTRUCTION REGISTER

The Instruction register allows instruction to be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdata registerpaththatisusedtoshiftdatabetween TDI and TDO during data register scanning.
The Instruction Registeris a 4 bitfield (i.e.IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
0×00	EXTEST	SelectBoundary Scan Register
0×02	IDCODE	SelectChipIdentification dataregister
0×01	SAMPLE/PRELOAD	SelectBoundary ScanRegister
0×03	HIGH-IMPEDANCE	JTAG
$0 \times 0 \mathrm{~F}$	BYPASS	SelectBypass Register

Table 6. JTAG Instruction Register Decoding
The following sections provide abrief description of each instruction. For acompletedescription refertothe IEEEStandard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmode and selectsthe boundary-scan registerto be connected betweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip viathe boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-lesstesting of solder-jointopens/shorts and of logic clusterfunction.

IDCODE

Theoptional IDCODE instructionallowsthe ICto remaininitsfunctional mode and selects the optional device identification registerto be connected between TDI and TDO. The deviceidentification registerisa32-bitshiftregistercontaining information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere withtheoperation of the IC. Also, access tothe device identification register should beimmediately available, via TAP data-scan operation, after power-up of the IC or after the TAP has been resetusing the optional TRST pin or by otherwise moving to the Test-Logic-Resetstate.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normalfunctional mode and selectstheboundary-scan registertobeconnected betweenTDI and TDO. During this instruction, the boundary-scan registercan be accessed via a date scan operation, to take a sample of the functional data entering and leavingtheIC. This instruction is also used to preloadtest datainto the boundary-scan register before loading an EXTEST instruction.

HIGH-IMPEDANCE

Theoptional High-Impedance instruction sets all outputs (including two-state as well as three-state types) of an ICto a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. Duringthis instruction, data can be shiftedthroughthe bypass registerfromTDI to TDO withoutaffecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

NOTES:

1. Industrial temperature range product for $7-5 \mathrm{~ns}$ and 15 ns are available as standard device. All other speed grades are available by special order.
2. Green parts are available. For specific speeds and packages contact you sales office.

DATASHEET DOCUMENT HISTORY

$05 / 25 / 2000$	pgs. $1,6,7,8,34$, and 35.
$07 / 28 / 2000$	pgs. 13,14 , and 34.
$12 / 14 / 2000$	pgs. 6,7 , and 8.
$03 / 27 / 2001$	pg.
7.	
$04 / 06 / 2001$	pgs. 4,5 , and 18.
$12 / 14 / 2001$	pgs. $1-36$.
$12 / 16 / 2002$	pgs. $1-11,20,21,26$, and $38-47$.
$02 / 11 / 2003$	pgs. 7, and 45.
$06 / 26 / 2003$	pgs. $1,3,9,10$, and 47.
$07 / 15 / 2003$	pgs. 3,20 , and 38-40.
$07 / 21 / 2003$	pgs. 7,43 , and $45-47$.
$09 / 29 / 2003$	pg. 8.
$11 / 02 / 2005$	pgs. $1,8-10$, and 48.
$04 / 06 / 2006$	pg.
p.	

