FEATURES

- Memory storage capacity:
IDT723654- $2,048 \times 36 \times 2$
IDT723664 - $4,096 \times 36 \times 2$
IDT723674 - $8,192 \times 36 \times 2$
- Clock frequencies up to 83 MHz (8 ns access time)
- Two independent clocked FIFOs buffering data in opposite directions
- Select IDT Standard timing (using $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}, \overline{\mathrm{FFA}}$, and $\overline{\mathrm{FFB}}$ flags functions) or First Word Fall Through Timing (using ORA, ORB, IRA, and IRB flag functions)
- Programmable Almost-Empty and Almost-Full flags; each has five default offsets (8, 16, 64, 256 and 1,024)
- Serial or parallel programming of partial flags
- Port B bus sizing of 36 bits (long word), 18 bits (word) and 9 bits (byte)
- Big- or Little-Endian format for word and byte bus sizes
- Retransmit Capability
- Master Reset clears data and configures FIFO, Partial Reset clears data but retains configuration settings
- Mailbox bypass registers for each FIFO
- Free-running CLKA and CLKB may be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Auto power down minimizes power dissipation
- Available in space saving 128-pin Thin Quad Flatpack (TQFP)
- Pin compatible to the lower density parts, IDT723624/723634/723644
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

FUNCTIONAL BLOCK DIAGRAM

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. SyncBiFIFO is a trademark of Integrated Device Technology, Inc

DESCRIPTION

The IDT723654/723664/723674 is a monolithic, high-speed, low-power, CMOS bidirectional synchronous (clocked) FIFO memory which supports clockfrequencies upto 83 MHz and has readaccesstimes asfastas8ns. Two independent2,048/4,096/8,192 $\times 36$ dual-portSRAM FIFOs on board each chip buffer data in opposite directions. FIFO data on Port B can be input and output in 36-bit, 18-bit, or 9-bit formats with a choice of Big- or Little-Endian configurations.

These devices are a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All data transfers through a port are gated totheLOW-to-HIGHtransition of a portclockby enable signals. The clocksfor each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/orbuses with synchronous control.

PIN CONFIGURATION

Communication between each portmay bypass the FIFOs viatwo mailbox registers. The mailbox registers' width matches the selected Port B bus width. Each Mailbox register has a flag ($\overline{\mathrm{MBF}}$ and $\overline{\mathrm{MBF}}$) to signal when new mail has been stored.

Two kinds of reset are available on these FIFOs: Master Reset and Partial Reset. Master Reset initializes the read and write pointers to the firstlocation of the memory array, configures the FIFO for Big- or Little-Endian byte arrangement and selects serial flag programming, parallel flag programming, or one of five possible default flag offset settings, $8,16,64,256$ or 1,024 . There are two Master Reset pins, $\overline{\mathrm{MRS}}$ and $\overline{\mathrm{MRS} 2 .}$

Partial Reset also sets the read and write pointers to the first location of the memory. UnlikeMaster Reset, any settings existing priorto Partial Reset (i.e., programming method and partial flagdefaultoffsets) are retained. Partial Reset is useful since it permits flushing of the FIFO memory without changing any configuration settings. Each FIFOhas its own, independent Partial Resetpin, $\overline{\text { PRS1 }}$ and $\overline{\text { PRS2 }}$.

Both FIFO's have Retransmitcapability, when a Retransmitis performedon a respective FIFO only the read pointer is reset to the first memory location. A Retransmitis performed by using the RetransmitMode, RTM pinin conjunction withthe Retransmitpins $\overline{\mathrm{RT} 1}$ or $\overline{R T 2}$, for each respective FIFO. Note that the two Retransmit pins $\overline{\mathrm{RT} 1}$ and $\overline{\mathrm{RT}} 2$ are muxed with the Partial Reset pins.

These devices have two modes of operation: Inthe IDTStandard mode, the firstword written to an empty FIFO is deposited into the memory array. A read operation is required to access that word (along with all other words residing in memory). In the First Word Fall Through mode(FWFT), the firstword written to an empty FIFO appears automatically on the outputs, no read operation required (Nevertheless, accessing subsequent words does necessitate a formal read request). The state of the BE/FWFT pin during Master Reset determines the mode in use.

These devices have two modes of operation: Inthe IDTStandard mode, the first word written to an empty FIFO is deposited into the memory array. A read operation is required to access that word (along with all other words residing in memory). In the First Word Fall Through mode(FWFT), the firstlong-word (36-bit wide) writtento an empty FIFO appears automatically on the outputs, no read operation is required (Nevertheless, accessing subsequent words does
necessitate a formal read request). The state of theBE/FWFT pin during FIFO operation determines the mode in use.
Each FIFO has a combined Empty/Output Ready Flag (EFA/ORA and $\overline{\mathrm{EFB}} /$ ORB) and a combined Full/Input Ready Flag ($\overline{\mathrm{FFA}} / \operatorname{RA} A$ and $\overline{\mathrm{FFB}} / \mathrm{RB}$). The $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions are selected in the IDT Standard mode. $\overline{\mathrm{EF}}$ indicates whether or not the FIFO memory is empty. $\overline{\mathrm{FF}}$ shows whether the memory is full or not. The IR and OR functions are selected in the FirstWord Fall Through mode. IR indicates whether or not the FIFO has available memory locations. OR shows whetherthe FIFO has data available for reading or not. It marks the presence of valid data on the outputs.
Each FIFO has a programmable AImost-Empty flag ($\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}})$ and a programmable Almost-Full flag ($\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$). $\overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}}$ indicate when aselectednumber of words remainintheFIFO memory. $\overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$ indicate when the FIFO contains more than a selected number of words.
$\overline{\mathrm{FFA}} / \mathrm{IRA}, \overline{\mathrm{FFB}} / \mathrm{IRB}, \overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$ are two-stage synchronized to the port clock that writes data into its array. $\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{AEA}}$ and $\overline{\mathrm{AEB}}$ are two-stage synchronized to the port clock that reads data from its array. Programmableoffsetsfor $\overline{A E A}, \overline{A E B}, \overline{\mathrm{AFA}}$ and $\overline{\mathrm{AFB}}$ areloaded in parallelusing Port A or in serial viatheSD input. Five default offset settings are also provided. The $\overline{A E A}$ and $\overline{A E B}$ threshold can be set at $8,16,64,256$ or 1,024 locations from the empty boundary and the $\overline{A F A}$ and $\overline{A F B}$ threshold can be setat 8, 16, 64,256 or 1,024 locations from the full boundary. All these choices are made using the FS0, FS1 and FS2 inputs during Master Reset.
Interspersed Parity can also be selected during a Master Reset of the FIFO. If Interspersed Parity is selected then during parallel programming of the flag offset values, the device will ignore data line A8. If Non-Interspersed Parity is selected then data line A8 will become a valid bit.
Two or more devices may be used in parallel to create wider data paths. If, at any time, the FIFO is not actively performing a function, the chip will automatically power down. During the power down state, supply current consumption(ICC) is ataminimum. Initiating any operation(by activating control inputs) will immediately take the device out of the power down state.
The IDT723654/723664/723674 are characterized for operationfrom $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available. They are fabricated using IDT's high speed, submicron CMOS technology.

PIN DESCRIPTIONS

Symbol	Name	I/0	Description
A0-A35	Port A Data	I/O	36-bit bidirectional dataport forside A.
$\overline{\text { AEA }}$	Port A AlmostEmptyFlag	0	Programmable Almost-Empty flag synchronized to CLKA. It is LOW when the number of words in FIFO2 is less than or equal to the value in the Almost-Empty A Offset register, X2.
$\overline{\mathrm{AEB}}$	Port B AlmostEmpty Flag	0	Programmable Almost-Empty flag synchronized to CLKB. It is LOW when the number of words in FIFO1 is less than or equal to the value in the Almost-Empty B Offset register, X1.
$\overline{\text { AFA }}$	Port A AlmostFull Flag	0	Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of empty locations in FIFO1 is less than or equal to the value in the Almost-Full A Offset register, Y1.
$\overline{\mathrm{AFB}}$	PortB AlmostFull Flag	0	Programmable Almost-Full flag synchronized to CLKB. It is LOW when the number of empty locations in FIFO2 is less than or equal to the value in the Almost-Full B Offset register, Y2.
B0-B35	Port A Data	I/O	36-bit bidirectional data portfor side B.
BE/FWFT	Big-Endian/ FirstWord Fall Through Select	1	This is a dual purpose pin. During Master Reset, a HIGH on BE will select Big Endian operation. In this case, depending on the bus size, the most significant byte or word on Port A is read from Port B first (A-to-B data flow) or written to Port B first (B-to-A data flow). A LOW on BE will select Little-Endian operation. In this case, the least significant byte or word on Port A is read from Port B first (for A-to-B data flow) or written to Port B first (B-to-A data flow). After Master Reset, this pin selects the timing mode. A HIGH on FWFT selects IDT Standard mode, a LOW selects First Word Fall Through mode. Once the timing mode has been selected, the level on FWFT must be static throughout device operation.
BM ${ }^{(1)}$	Bus-MatchSelect (Port B)	1	A HIGH on this pin enables either byte or word bus width on Port B, depending on the state of SIZE. A LOW selects long word operation. BM works with SIZE and BE to select the bus size and endian arrangement for Port B. The level of BM must be static throughout device operation.
CLKA	PortA Clock	I	CLKA is a continuous clock that synchronizes all data transfers through Port A and can be asynchronous or coincident to CLKB. $\overline{\text { FFA }} /$ IRA, $\overline{E F A} / O R A, \overline{A F A}$, and $\overline{A E A}$ are all synchronized to the LOW-to-HIGHtransition of CLKA.
CLKB	PortBClock	I	CLKB is a continuous clock that synchronizes all data transfers through Port B and can be asynchronous or coincident to CLKA. $\overline{\mathrm{FFB}} / \mathrm{RB}, \overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{AFB}}$, and $\overline{\mathrm{AEB}}$ are synchronized to the LOW-to-HIGH transition of CLKB.
$\overline{\mathrm{CSA}}$	Port A Chip Select	1	CSA must be LOW to enable to LOW-to-HIGH transition of CLKA to read or write on Port A. The AO-A35 outputs are in the high-impedance state when CSA is HIGH.
$\overline{\text { CSB }}$	PortBChip Select	1	$\overline{\mathrm{CSB}}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on Port B. The B0-B35 outputs are in the high-impedance state when $\overline{\text { CSB }}$ is HIGH.
EFA/ORA	PortA Empty/ Output Ready Flag	0	This is a dual function pin. In the IDT Standard mode, the $\overline{E F A}$ function is selected. $\overline{\text { EFA }}$ indicates whether or not the FIFO2 memory is empty. In the FWFT mode, the ORA function is selected. ORA indicates the presence of valid data on A0-A35 outputs, available for reading. EFA/ORA is synchronized to the LOW-to-HIGH transition of CLKA.
$\overline{\mathrm{EFB}} / \mathrm{ORB}$	Port B Empty/ Output Ready Flag	0	This is a dual function pin. In the IDT Standard mode, the $\overline{\text { EFB }}$ function is selected. $\overline{\text { EFB }}$ indicates whether or not the FIFO1 memory is empty. In the FWFT mode, the ORB function is selected. ORB indicates the presence of valid data on the B0-B35 outputs, available for reading. $\overline{E F B} / O R B$ is synchronized tothe LOW-to-HIGH transition of CLKB.
ENA	Port A Enable	I	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on Port A.
ENB	Port B Enable	1	ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on Port B.
$\overline{\text { FFAIIRA }}$	Port A Full/ Input Ready Flag	0	This is a dual function pin. In the IDT Standard mode, the FFAfunction is selected. FFA indicates whether or not the FIFO1 memory is full. In the FWFT mode, the IRA function is selected. IRA indicates whether or not there is space available for writing to the FIFO1 memory. FFAIIRA is synchronized to the LOW-to-HIGH Hransition of CLKA.
$\overline{\mathrm{FFB}} / \mathrm{RB}$	Port B Full/ Input Ready Flag	0	This is a dual function pin. In the IDT Standard mode, the FFB function is selected. FFB indicates whether or not the FIFO2 memory is full. In the FWFT mode, the IRB function is selected. IRB indicates whether or not there is space available for writing to the FIFO2 memory. $\overline{\mathrm{FFB}} / \mathrm{RB}$ is synchronized to the LOW-to-HIGH transition of CLKB.

PIN DESCRIPTIONS (CONTINUED)

\begin{tabular}{|c|c|c|c|}
\hline Symbol \& Name \& 1/0 \& Description \\
\hline FSO/SD
FS1/ \(\overline{\text { SEN }}\)
FS2 \({ }^{(1)}\) \& \begin{tabular}{l}
Flag OffsetSelect0/ Serial Data \\
Flag OffsetSelect1/ Serial Enable \\
Flag OffsetSelect2
\end{tabular} \& 1

। \& | FS1/SEN and FSO/SD are dual-purpose inputs used for flag offset register programming. During Master Reset, FS1/SEN and FSO/SD, together with FS2, select the flag offset programming method. Three offsetregister programming methods are available: automatically load one of five preset values ($8,16,64,256$ or 1,024), parallel load from Port A, and serial load. |
| :--- |
| When serial load is selected forflag offset register programming, FS1//SENis used as an enable synchronous to the LOW-to-HIGH transition of CLKA. When FS1/SENis LOW, a rising edge on CLKA load the bit present on FSO/SD into the X and Y registers. The number of bit writes required to program the offset registers is 44 for the IDT723654, 48 for the IDT723664, and 52 for the IDT723674. The first bitwrite stores the Y-register (Y1) MSB and the last bit write stores the X-register (X2) LSB. |

\hline MBA \& Port A Mailbox Select \& I \& A HIGH level on MBA chooses a mailbox register for a Port A read or write operation. When the A0-A35 outputs are active, a HIGH level on MBA selects data from the mail2 register for output andaLOW level selects FIFO2 output register data for output.

\hline MBB \& Port B Mailbox Select \& 1 \& A HIGH level on MBB chooses a mailbox register for a Port B read or write operation. When the B0-B35 outputs are active, a HIGH level on MBB selects data from the maill register for output and aLOW level selects FIFO1 output register data for output.

\hline $\overline{\text { MBF1 }}$ \& Mail1 Register Flag \& 0 \& $\overline{\text { MBF1 }}$ is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register. Writes to the mail 1 register are inhibited while MBF1 is LOW. $\overline{\text { MBF1 }}$ is set HIGH by a LOW-toHIGH transition of CLKB when a Port B read is selected and MBB is HIGH. MBF1 is set HIGH following either a Master or Partial Reset of FIFO1.

\hline $\overline{\text { MBF2 }}$ \& Mail2 Register Flag \& 0 \& $\overline{\text { MBF22 }}$ is setLOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is LOW. MBF2 is setHIGH by a LOW-to-HIGH transition of CLKA when a Port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is set HIGH following either a Master or Partial Reset of FIFO2.

\hline $\overline{\text { MRS1 }}$ \& FIFO1 Master Reset \& 1 \& A LOW on this pin initializes the FIFO1 read and write pointers to the first location of memory and sets the PortB output registertoall zeroes. A LOW-to-HIGH transition on $\overline{\mathrm{MRS}}$ selects the programming method (serial or parallel) and one of five programmable flag default offsets for FIFO1 and FIFO2. It also configures PortBfor bus size and endian arrangement. Four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB mustoccur while $\overline{\text { MRS }}$ is $L O W$.

\hline $\overline{\text { MRS2 }}$ \& FIFO2 Master Reset \& 1 \& A LOW on this pin initializes the FIFO2 read and write pointers to the firstlocation of memory and sets the Port A output registerto all zeroes. A LOW-to-HIGH transition on $\overline{M R S 2}$, toggled simultaneously with $\overline{M R S 1}$, selects the programming method (serial orparallel) and one of the programmableflag default offsets for FIFO2. Four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB mustoccur while $\overline{\text { MRS2 }}$ is LOW.

\hline \[
$$
\begin{aligned}
& \overline{\mathrm{PRS1}} \overline{\mathrm{RT} 1}
\end{aligned}
$$

\] \& | Partial Reset/ |
| :--- |
| RetransmitFIFO1 | \& 1 \& This pin is muxedforboth Partial Reset and Retransmitoperations, itis used in conjunction with the RTM pin. If RTM is in a LOW condition, a LOW on this pin performs a Partial Reset on FIFO1 and initializes the FIFO1 read and write pointers to the firstlocation of memory and sets the PortB output register to all zeroes. During Partial Reset, the currently selected bus size, endian arrangement, programming method (serial or parallel), and programmable flag settings are all retained. If RTM is HIGH, a LOW on this pin performs a Retransmit and initializes the FIFO1 read pointer only to the first memory location.

\hline \[
$$
\begin{aligned}
& \overline{\mathrm{PRS} 2} \\
& \overline{\mathrm{RT} 2}
\end{aligned}
$$

\] \& | Partial Reset/ |
| :--- |
| RetransmitFIFO2 | \& 1 \& This pin is muxedforboth Partial Reset and Retransmitoperations, itis used in conjunction with the RTM pin. If RTMis in a LOW condition, a LOW on this pin performs a Partial Reset on FIFO2 and initializes the FIFO2 read and write selected bus size, endian arrangement, programming method (serial or parallel), and programmable flag settings are all retained. If RTM is $\mathrm{HIGH}, \mathrm{a}$ LOW onthis pin performs a Retransmit and initializes the FIFO2 read pointer only to the first memory location.

\hline RTM \& RetransmitMode \& 1 \& This pinis used in conjunction with the $\overline{\mathrm{RT}}$ and $\overline{\mathrm{RT} 2}$ pins. When RTM is HIGH a Retransmitis performed on FIFO1 or FIFO2 respectively.

\hline SIZE ${ }^{(1)}$ \& Bus Size Select \& 1 \& A HIGH on this pin when BM is HIGH selects byte bus (9-bit) size on Port B. A LOW on this pin when BM is HIGH selects word (18-bit) bus size. SIZE works with BM and BE to select the bus size and endian arrangement for Port B. The level of SIZE must be static throughout device operation

\hline
\end{tabular}

NOTE:

1. FS2, BM and SIZE inputs are not TTL compatible. These inputs should be tied to GND or Vcc.

PIN DESCRIPTIONS (CONTINUED)

Symbol	Name	I/O	Description
W/RA	Port-A Write/ Read Select	I	A HIGH selects a write operation and a LOW selects a read operation on Port A for a LOW-to-HIGH transition of CLKA. The A0-A35 outputs are in the HIGH impedance state when W/RAis HIGH.
$\overline{\text { W/R/RB }}$	Port-BWrite/ ReadSelect	I	A LOW selects a write operation and a HIGH selects a read operation on Port B for a LOW-to-HIGH transition of CLKB. The B0-B35 outputs are in the HIGH impedance state when $\bar{W} / R B$ is LOW.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)(${ }^{(1)}$

Symbol	Rating	Commercial	Unit
VCC	Supply Voltage Range	-0.5 to +7.0	V
$\mathrm{VI}^{(2)}$	Input Voltage Range	-0.5 to VCC +0.5	V
$\mathrm{VO}^{(2)}$	Output Voltage Range	-0.5 to VCC +0.5	V
IIK	Input Clamp Current $(\mathrm{VI}<0$ or $\mathrm{VI}>\mathrm{VCC})$	± 20	mA
IOK	Output Clamp Current $(\mathrm{Vo}=<0$ or Vo $>\mathrm{VCC})$	± 50	mA
IOUT	Continuous Output Current (Vo $=0$ to VCC $)$	± 50	mA
ICC	Continuous Current Through VCC or GND	± 400	mA
TSTG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VcC	Supply Voltage	4.5	5.5	V
VIH	HIGH Level Input Voltage	2	-	V
VIL	LOW-Level InputVoltage	-	0.8	V
IOH	HIGH-Level Output Current	-	-4	mA
IOL	LOW-Level Output Current	-	8	mA
TA	OperatingFree-airTemperature	0	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT723654 IDT723664 IDT723674 Commercial $\text { tCLK }=12,15 \mathrm{~ns}$			Unit
				Min.	Typ. ${ }^{(1)}$	Max.	
VoH	OutputLogic "1" Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
Vol	OutputLogic "0" Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	InputLeakage Current(Any Input)	$\mathrm{VcC}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 10	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent	$\mathrm{VcC}=5.5 \mathrm{~V}$,	V = Vcc or 0	-	-	± 10	$\mu \mathrm{A}$
ICc2 ${ }^{(2)}$	Standby Current (with CLKA \& CLKB running)	$\mathrm{VcC}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0V	-	-	8	mA
$\mathrm{ICC3}^{(2)}$	Standby Current(noclocks running)	$\mathrm{VcC}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0 V	-	-	1	mA
$\mathrm{CIN}^{(3)}$	InputCapacitance	$V_{1}=0$,	$f=1 \mathrm{MHz}$	-	4	-	pF
Cout ${ }^{(3)}$	OutputCapacitance	$\mathrm{Vo}=0$,	$f=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).
3. Characterized values, not currently tested.
4. Industrial temperature range is available by special order.

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT723654/723664/723674 with CLKA andCLKB settofs. All datainputs and data outputs change state during each clock cycle to consume the highestsupply current. Data outputs were disconnected to normalize the graph to a zero capacitance load. Once the capacitance load per data-output channel and the number of these device's inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:

$$
\mathrm{PT}=\operatorname{Vcc} \times \operatorname{Icc}(f)+\Sigma\left(\operatorname{CL} \times \operatorname{Vcc}^{2} x \text { fo }\right)
$$

N
where:
$N=$ number of used outputs (36-bit (long word), 18-bit (word) or 9-bit (byte) bus size)
CL = outputcapacitanceload
fo $=$ switching frequency of an output

Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol		Commercial				Unit
		IDT723654L12 IDT723664L12 IDT723674L12		IDT723654L15 IDT723664L15 IDT723674L15		
	Parameter	Min.	Max.	Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	83	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	12	-	15	-	ns
tCLKH	Pulse Duration, CLKA or CLKB HIGH	5	-	6	-	ns
tCLKL	Pulse Duration, CLKA and CLKB LOW	5	-	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	3	-	4	-	ns
tENS1	Setup Time, $\overline{\mathrm{CSA}}$ and W/ $\overline{\mathrm{R}}$ A before CLKA \uparrow; $\overline{\text { SBB }}$ and $\overline{\mathrm{W}} / \mathrm{RB}$ before CLKB \uparrow	4	-	4.5	-	ns
tENS2	Setup Time, ENA, and MBA before CLKA ; ENB, and MBB before CLKB \uparrow	3	-	4.5	-	ns
tRSTS	Setup Time, $\overline{\text { MRS1 }}$, $\overline{\mathrm{MRS2}}$, $\overline{\text { PRS1 }}$, or $\overline{\text { PRS2 }}$ LOW before CLKA \uparrow or CLKB $\uparrow^{(1)}$	5	-	5	-	ns
tFSS	Setup Time, FSO, FS1, FS2 before $\overline{\mathrm{MRS} 1}$ and $\overline{\mathrm{MRS} 2} \mathrm{HIGH}$	7.5	-	7.5	-	ns
tBES	Setup Time, BE/FWFT before MRS1 and $\overline{\text { MRS2 }}$ HIGH	7.5	-	7.5	-	ns
tsDS	Setup Time, FSO/SD before CLKA \uparrow	3	-	4	-	ns
tSENS	Setup Time, FS $1 / \overline{\text { SEN }}$ before CLKA \uparrow	3	-	4	-	ns
trws	Setup Time, BE/FWFT before CLKA \uparrow	0	-	0	-	ns
tRTMS	Setup Time, RTM before $\overline{\mathrm{RT} 1}$; RTM before $\overline{\mathrm{RT}}$ 2	5	-	5	-	ns
DH	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	0.5	-	1	-	ns
tenh	Hold Time, $\overline{C S A}, \mathrm{~W} / \overline{\mathrm{R} A}, \mathrm{ENA}$, and MBA after CLKA $\uparrow ; \overline{\mathrm{CSB}}, \bar{W} / R B$, ENB, and MBBafterCLKB \uparrow	0.5	-	1	-	ns
tRSTH	Hold Time, $\overline{\text { MRS } 1, ~} \overline{\text { MRS2 }}$, $\overline{\text { PRS } 1 ~ o r ~} \overline{\text { PRS2 }}$ LOW after CLKA ${ }^{\text {a }}$ or CLKB ${ }^{(1)}$	4	-	4	-	ns
tFSH	Hold Time, FS0, FS1, FS2 after $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }}$ HIGH	2	-	2	-	ns
tBEH	Hold Time, BE/ $\overline{\mathrm{FWFT}}$ after $\overline{\mathrm{MRS1}}$ and $\overline{\mathrm{MRS}} \mathbf{~ H I G H}$	2	-	2	-	ns
tSDH	Hold Time, FSO/SD after CLKA \uparrow	0.5	-	1	-	ns
tsenh	Hold Time, FS1/ $\overline{\text { EN }}$ HIGH after CLKA \uparrow	0.5	-	1	-	ns
tsPH	Hold Time, FS1//̄EN HIGH after $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }}$ HIGH	2	-	2	-	ns
trTM	Hold Time, RTM after $\overline{\text { RT1 }}$; RTM after $\overline{\mathrm{RT}} \mathbf{2}$	5	-	5	-	ns
tSKEW ${ }^{(2)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{E F A} / O R A, \overline{E F B} / O R B, \overline{\text { FFA/IRA, }}$ and $\overline{F F B} / / R B$	5	-	7.5	-	ns
tSKEW2 ${ }^{(23)}$	Skew Time between CLKA \uparrow and CLKB \uparrow for $\overline{A E A}, \overline{\mathrm{AEB}}, \overline{\mathrm{AFA}}$, and $\overline{\mathrm{AFB}}$	12	-	12	-	ns

NOTES:

1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
3. Design simulated, not tested.
4. Industrial temperature range is available by special order.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30pF
(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial				Unit
		IDT723654L12IDT723664L12IDT723674L12		IDT723654L15 IDT723664L15 IDT723674L15		
		Min.	Max.	Min	Max.	
tA	Access Time, CLKA to A0-A35 and CLKB \uparrow to B0-B35	2	8	2	10	ns
tWFF	Propagation Delay Time, CLKA to $\overline{F F A} / I R A$ and CLKB \uparrow to $\overline{F F B} / / \mathrm{RB}$	2	8	2	8	ns
treF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{EFA}} / \mathrm{ORA}$ and CLKB \uparrow to $\overline{\mathrm{EFB}} / \mathrm{ORB}$	1	8	1	8	ns
tPAE	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AEA}}$ and CLKB \uparrow to $\overline{\mathrm{AEB}}$	1	8	1	8	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AFA}}$ and CLKB \uparrow to $\overline{\mathrm{AFB}}$	1	8	1	8	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\mathrm{MBF1}} \mathrm{LOW}$ or $\overline{\mathrm{MBF}} \mathrm{HIGH}$ and CLKB \uparrow to $\overline{\mathrm{MBF2}}$ LOW or $\overline{\text { MBF1 }} \mathrm{HIGH}$	0	8	0	8	ns
tPMR	Propagation Delay Time, CLKA \uparrow to B0-B35 ${ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35^{(2)}$	2	8	2	10	ns
tMDV	Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B35 valid	2	8	2	10	ns
tRSF	Propagation Delay Time, $\overline{\text { MRS1 }}$ or $\overline{\text { PRS1 }}$ LOW to $\overline{\text { AEB }}$ LOW, $\overline{\text { AFA }}$ HIGH, and $\overline{\mathrm{MBF1}}$ HIGH and $\overline{\text { MRS2 }}$ or $\overline{\text { PRS2 }}$ LOW to $\overline{\text { AEA }}$ LOW, $\overline{\text { AFB }}$ HIGH, and $\overline{\text { MBF2 }}$ HIGH	1	10	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ or W/R्रA LOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\overline{\mathrm{W}} / \mathrm{RB}$ HIGH to B0-B35 Active	2	6	2	10	ns
tDIS	Disable Time, $\overline{\text { CSA }}$ or W $/ \bar{R} A$ HIGH to A0-A35 at high impedance and $\overline{\mathrm{CSB}}$ HIGH or $\bar{W} /$ RB LOW to BO -B35 at high impedance.	1	6	1	8	ns

NOTES:

1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.
3. Industrial temperature range is available by special order.

SIGNAL DESCRIPTION

MASTER RESET ($\overline{\text { MRS1 }}, \overline{\text { MRS2 }}$)

After power up, a Master Reset operation must be performed by providing aLOW pulse to $\overline{\mathrm{MRS}}$ and $\overline{\mathrm{MRS} 2}$ simultaneously. Afterwards, each of the two FIFO memories of the IDT723654/723664/723674 undergoes a complete reset by taking its associated Master Reset ($\overline{\mathrm{MRS}} 1, \overline{\mathrm{MRS}}$) input LOW for at least four Port A Clock (CLKA) and four Port B Clock (CLKB) LOW-to-HIGH transitions. The Master Resetinputs can switch asynchronously totheclocks. A Master Reset initializes the associated write and read pointers to the first location of the memory and forces the Full/Input Ready flag ($\overline{\mathrm{FFA}} / \mathrm{IRA}, \overline{\mathrm{FFB}} /$ IRB) LOW, the Empty/Output Ready flag ($\overline{\mathrm{EFA}} / \mathrm{ORA}, \overline{\mathrm{EFB}} / \mathrm{ORB}$) LOW, the Almost-Emptyflag ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}})$ LOW andforcesthe Almost-Fullflag $(\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}})$ HIGH. AMaster Resetalsoforces the associated MailboxFlag (MBF1, MFB2) of the parallel mailbox register HIGH. After a Master Reset, the FIFO's Full/ Input ReadyflagissetHIGHaftertwo write clock cycles. Thenthe FIFO is ready to be writtento.

ALOW-to-HIGHtransition onthe FIFO1 MasterReset ($\overline{\mathrm{MRS}})$ inputlatches the values of the Big-Endian(BE) inputfor determiningthe orderby which bytes aretransferredthrough PortB. Italso latchesthe values of the FlagSelect(FSO, FS1 and FS2) inputs for choosing the Almost-Full and Almost-Empty offset programmingmethod.

A LOW-to-HIGH transition on the FIFO2 Master Reset ($\overline{\text { MRS2 }}$) clears the Flag Offset Registers of FIFO2 (X2, Y2). A LOW-to-HIGH transition on the FIFO2 Master Reset ($\overline{\text { MRS2 }}$) together with the FIFO1 Master Reset($\overline{\text { MRS1 }}$) input latches the value of the Big-Endian (BE) inputforPortB and also latches the values of the FlagSelect(FS0, FS1 and FS2) inputs forchoosingthe AlmostFull and Almost-Empty offset programming method. (For details see Table 1, Flag Programming, and the Programming the Almost-Empty and Almost-Full Flagssection). The relevantFIFO Master Resettiming diagram canbefound in Figure 3.

PARTIAL RESET ($\overline{\text { PRS1 }}, \overline{\text { PRS2 }})$

Each of the two FIFO memories of these devices undergoes a limited reset by takingits associated Partial Reset($\overline{\mathrm{PRS1}}, \overline{\mathrm{PRS} 2})$ inputLOW for at leastfour PortAClock (CLKA) and four PortBClock (CLKB) LOW-to-HIGHtransitions. The Partial Reset inputs can switch asynchronously to the clocks. A Partial Reset initializes the internal read and write pointers and forces the Full/Input Ready flag ($\overline{\mathrm{FFA}} / \mathrm{IRA}, \overline{\mathrm{FFB}} / \mathrm{IRB}$) LOW, the Empty/Output Ready flag ($\overline{\mathrm{EFA}} /$ ORA, $\overline{\mathrm{EFB}} / \mathrm{ORB}$) LOW, the Almost-Empty flag ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}$) LOW, and the Almost-Fullflag ($\overline{\text { AFA }}, \overline{\mathrm{AFB}})$ HIGH. A Partial ResetalsoforcestheMailboxFlag ($\overline{\text { MBF1 }}, \overline{M B F 2}$) of the parallel mailbox registerHIGH. After a Partial Reset, the FIFO's Full/Input Ready flag is set HIGH after two write clock cycles. Then the FIFO is ready to be written to.

Whateverflag offsets, programming method (parallel or serial), andtiming mode(FWFT orIDTStandardmode) are currently selectedatthe timea Partial Reset is initiated, those settings will be remain unchanged upon completion of the reset operation. A Partial Reset may be useful in the case where reprogramming aFIFO following a Master Reset would be inconvenient. See Figure 4 for the Partial Resettiming diagram.

RETRANSMIT ($\overline{\mathrm{RT} 1}, \overline{\mathrm{RT} 2})$

The FIFO1 memory of these devices undergoes a Retransmitby taking its associated Retransmit ($\overline{\text { RT1 }})$ inputLOW for at leastfour PortA Clock (CLKA)
and four Port B Clock (CLKB) LOW-to-HIGH transitions. The Retransmit initializes the read pointer of FIFO1 to the first memory location.

The FIFO2 memory undergoes a Retransmit by taking its associated Retransmit($\overline{\text { RT2 }}$) inputLOW for atleastfour Port A Clock (CLKA) andfour Port CClock(CLKC)LOW-to-HIGHtransitions. The Retransmitinitializes the read pointer of FIFO2 to the firstmemory location.

The RTM pin mustbeHIGH during the time of Retransmit. Notethatthe $\overline{\mathrm{RT} 1}$ inputis muxed withthe $\overline{\operatorname{PRS}}$ input, the state of the RTM pindetermining whether this pin performs a Retransmit or Partial Reset. Also, the $\overline{R T 2}$ input is muxed with the $\overline{\mathrm{PRS} 2}$ input, the state of the RTM pin determining whether this pin performsa Retransmitor Partial Reset.

BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)

— ENDIAN SELECTION

This is adual purpose pin. Atthetime of Master Reset, the BE selectfunction is active, permitting a choice of Big or Little-Endian byte arrangementfor data written to or read from PortB. This selection determines the order by which bytes (or words) of data are transferred through this port. For the following illustrations, assume that a byte (orword) bus size has been selected for Port B. (Note that when Port B is configured for a long word size, the Big-Endian function has no application and the BE input is a "don't care" 1 .)

A HIGH on the BE/FWFT input when the Master Reset ($\overline{\mathrm{MRS} 1}, \overline{\mathrm{MRS} 2}$) inputs go from LOW to HIGH will selectaBig-Endian arrangement. When data is moving in the direction from PortA to PortB, the mostsignificantbyte (word) of the long word writtento PortA will be readfrom PortBfirst; the leastsignificant byte (word) of the long word writtento PortA will be readfrom PortBlast. When data is moving in the direction from Port B to Port A, the byte (word) written to PortB first will be read from Port A as the mostsignificant byte (word) of the long word; the byte (word) written to Port B last will be read from Port A as the least significant byte (word) of the long word.
A LOW on the BE/FWFT input when the Master Reset ($\overline{\mathrm{MRS1}}, \overline{\mathrm{MRS} 2}$) inputs go fromLOWtoHIGH willselectaLittle-Endianarrangement. When data is moving in the direction from PortA to PortB, the leastsignificantbyte (word) ofthe long word writtento PortA will be readfrom PortBfirst; the mostsignificant byte (word) of the long word writtento PortA will be readfrom PortBlast. When data is moving in the direction from Port B to Port A, the byte (word) written to PortB first will be read from Port A as the leastsignificantbyte (word) of the long word; the byte (word) written to Port B last will be read from Port A as the most significant byte (word) of the long word. Refer to Figure 2 for an illustration oftheBEfunction. SeeFigure3(Master Reset) forthe Endianselect timing diagram.

- TIMING MODE SELECTION

After Master Reset, the FWFT selectfunction is active, permitting a choice between two possible timing modes: IDT Standard mode or First Word Fall Through (FWFT) mode. Once the Master Reset ($\overline{\mathrm{MRS1}}, \overline{\mathrm{MRS}}$) input is HIGH, aHIGH ontheBE/FWFT inputduring the nextLOW-to-HIGH transition of CLKA (for FIFO1) and CLKB (for FIFO2) will select IDT Standard mode. This mode uses the Empty Flag function ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}$) to indicate whether or not there are any words present in the FIFO memory. It uses the Full Flag function ($\overline{\mathrm{FFA}}, \overline{\mathrm{FFB}}$) to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using a formal read operation.

NOTE:

1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused inputs) must not be left open, rather they must be either HIGH or LOW.

Once the Master Reset ($\overline{\mathrm{MRS} 1}, \overline{\mathrm{MRS} 2}$) input is HIGH, a LOW on the BE/ FWFT inputduring the exextLOW-to-HIGHtransition of CLKA (forFIFO1) and CLKB (forFIFO2) will selectFWFT mode. This mode uses the Output Ready function (ORA, ORB) to indicate whether or not there is valid data at the data outputs (A0-A35 or BO-B35). Italso uses the Input Ready function (IRA, IRB) to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, the firstword writtento an empty FIFO goes directly to data outputs, no read requestnecessary. Subsequent words mustbe accessed by performing a formal read operation.
Following Master Reset, the level applied to the $\mathrm{BE} / \overline{\mathrm{FWFT}}$ inputto choose the desired timing mode mustremain static throughoutFIFO operation. Refer to Figure3(Master Reset)foraFirstWord Fall Through select timing diagram.

PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULL FLAGS

Four registers in the IDT723654/723664/723674 are used to hold the offset values for the Almost-Empty and Almost-Full flags. The Port B Almost-Empty flag($\overline{\text { AEB }})$ Offsetregisteris labeled X1 and the Port A Almost-Empty flag $(\overline{\text { AEA }})$ Offsetregisteris labeled X2. The Port A Almost-Fullflag (AFA) Offset register is labeled Y 1 and the PortBAImost-Full flag ($\overline{\mathrm{AFB}})$ Offsetregister is labeled Y 2. The index of each register name corresponds to its FIFO number. The offset registers can be loaded with preset values during the reset of a FIFO, programmed in parallel using the FIFO's Port A data inputs, or programmed in serial using the Serial Data (SD) input (see Table 1).

FSO/SD, FS1/SEN and FS2 function the same way in both IDT Standard and FWFT modes.

- PRESET VALUES

ToloadaFIFO's Almost-Emptyflag and Almost-Full flag Offsetregisters with one of the five presetvalues listed in Table 1, the flag select inputs mustbe HIGH
or LOW during a master reset. For example, to load the presetvalue of 64 into X1 and Y1, FSO, FS1 and FS2 must be HIGH when FIFO1 reset (MRS1) returns HIGH. Flag-offsetregisters associated with FIFO2 are loaded with one of the presetvalues in the same way with FIFO2 Master Reset (MRS2), toggled simultaneously with FIFO1 Master Reset (MRS1). For relevant preset value loading timing diagram, see Figure 3.

-PARALLEL LOAD FROM PORTA

To program the $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$, and Y 2 registers from Port A, perform a Master Reset on both FIFOs simultaneously with FS2 HIGH or LOW, FSO and FS1 LOWduringtheLOW-to-HIGHtransition ofMRS1 andMRS2. The state ofFS2 at this point of reset will determine whether the parallel programming method has Interspersed Parity or Non-Interspersed Parity. Referto Table 1 for Flag Programming Flag Offset setup . It is important to note that once parallel programming has been selected during a Master Reset by holding both FSO \& FS1 LOW, these inputs must remain LOW during all subsequent FIFO operation. They can only be toggled HIGH when future Master Resets are performed and other programming methods are desired.
Afterthis resetis complete, the firstfour writes to FIFO1 do not store data in RAM but load the Offset registers in the order $\mathrm{Y} 1, \mathrm{X} 1, \mathrm{Y} 2, \mathrm{X} 2$. For NonInterspersed Parity modethe PortA datainputs used by the Offsetregisters are (A10-A0), (A11-A0), or (A12-A0) for the IDT723654, IDT723664, or IDT723674, respectively. For Interspersed Parity mode the Port A data inputs used by the Offsetregisters are (A11-A9, A7-A0), (A12-A9, A7-A0), or (A13A9, A7-A0) for the IDT723654, IDT723664, or IDT723674, respectively. The highestnumbered inputis used as the mostsignificantbito ft the binary number in each case. Valid programming values forthe registers range from 1 to 2,044 for the IDT723654; 1 to 4,092 for the IDT723664; and 1 to 8,188 for the IDT723674. Atterall the offsetregisters are programmedfrom PortA, the PortB

TABLE 1 - FLAG PROGRAMMING

FS2	FS1/SEN	FSO/SD	$\overline{\text { MRS }}$	MRS2	X1 AND Y1 REGISTERS ${ }^{(1)}$	X2 AND Y2 REGISTERS ${ }^{(2)}$
H	H	H	\uparrow	X	64	X
H	H	H	X	\uparrow	X	64
H	H	L	\uparrow	X	16	X
H	H	L	X	\uparrow	X	16
H	L	H	\uparrow	X	8	X
H	L	H	X	\uparrow	X	8
L	H	H	\uparrow	X	256	X
L	H	H	X	\uparrow	X	256
L	L	H	\uparrow	x	1,024	X
L	L	H	X	\uparrow	X	1,024
L	H	L	\uparrow	\uparrow	Serial programmingviaSD	Serial programming via SD
H	L	L	\uparrow	\uparrow	Parallel programming via Port $A^{(3,5)}$	Parallel programming via Port $A^{(3,5)}$
L	L	L	\uparrow	\uparrow	IP Mode ${ }^{(4,5)}$	IP Mode ${ }^{(4,5)}$

NOTES:

1. X1 register holds the offset for $\overline{\overline{E E B}} ; \mathrm{Y} 1$ register holds the offset for $\overline{\mathrm{AFA}}$.
2. X2 register holds the offset for $\overline{A E A} ; ~ Y 2$ register holds the offset for $\overline{\mathrm{AFB}}$.
3. When this method of parallel programming is selected, Port A will assume Non-Interspersed Parity.
4. When IP Mode is selected, only parallel programming of the offset values via Port A, can be performed and Port A will assume Interspersed Parity.
5. IF parallel programming is selected during a Master Reset, then FSO \& FS1 must remain LOW during FIFO operation.

Full/Input Ready flag ($\overline{\mathrm{FFB}} / \mathrm{IRB}$) is set HIGH, and both FIFOs begin normal operation. Refer to Figure 5 for a timing diagram illustration of parallel programming of the flag offsetvalues.

INTERSPERSED PARITY

Interspersed Parity is selected during a Master Reset of the FIFO. Referto Table 1 for the set-up configuration of Interspersed Parity. The Interspersed Parity function allows the user to select the location of the parity bits in the word loaded intothe parallel port(A0-An)during programming of theflag offsetvalues. If Interspersed Parity is selected then during parallel programming of the flag
offset values, the device will ignore data line A8. If Non-Interspersed Parity is selected then dataline A8 will becomeavalid bit. IfInterspersed Parity is selected serial programming of the offset values is not permitted, only parallel programming can be done.

- SERIAL LOAD

To programthe $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$, and Y 2 registers serially, initiate a Master Reset with FS2 LOW, FSO/SD LOW and FS1/SEN HIGH during the LOW-to-HIGH transition of $\overline{M R S 1}$ and $\overline{\mathrm{MRS} 2}$. After this reset is complete, the X and Y register values are loaded bit-wise through the FSO/SD input on each LOW-to-HIGH

TABLE 2 - PORT A ENABLE FUNCTION TABLE

$\overline{\mathrm{CSA}}$	W/RA	ENA	MBA	CLKA	Data A (A0-A35) I/O	Port Function
H	X	X	X	X	High-Impedance	None
L	H	H	L	\uparrow	Input	FIFO1 write
L	H	H	H	\uparrow	Input	Mail1 write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	FIFO2 read
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail2 read (set $\overline{\text { MBF2 HIGH) }}$

TABLE 3 - PORT B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	$\bar{W} /$ RB	ENB	MBB	CLKB	Data B (B0-B35) I/O	Port Function
H	X	X	X	X	High-Impedance	None
L	L	L	X	X	Input	None
L	L	H	L	\uparrow	Input	FIFO2 write
L	L	H	H	\uparrow	Input	Mail2 write
L	H	L	L	X	Output	None
L	H	H	L	\uparrow	Output	FIFO1 read
L	H	L	H	X	Output	None
L	H	H	H	\uparrow	Output	Mail1 read (set $\overline{\text { MBF1 }}$ HIGH)

transition of CLKA that the FS1/ $\overline{\text { SEN }}$ input is LOW. There are 44 -, 48 -, or $52-$ bitwrites neededto completethe programming for the IDT723654, IDT723664, or IDT723674, respectively. The four registers are written in the order $\mathrm{Y} 1, \mathrm{X} 1$, Y2, andfinally, X2. The first-bitwrite stores the mostsignificantbit ofthe Y 1 register andthe last-bitwrite storesthe leastsignificantbitofthe X2 register. Each register value canbeprogrammed from 1 to2,044 (IDT723654), 1 to4,092 (IDT723664), or 1 to 8,188 (IDT723674).

When the optionto program the offsetregisters seriallyis chosen, the PortA Full/InputReady (FFA/IRA) flag remains LOW until all registerbits are written. FFA/IRA is setHIGH by the LOW-to-HIGH transition of CLKA after the lastbit is loadedto allow normal FIFO1 operation. The PortBFull/Input Ready (FFB/ IRB) flagalso remains LOW throughout the serial programming process, until all registerbits are written. FFB/RB is setHIGH bythe LOW-to-HIGHtransition of CLKB afterthelastbitisloadedtoallownormal FIFO2operation. SeeFigure 6 for Serial Programming ofthe Almost-Full Flag and Almost-Empty Flag Offset Values (IDT Standard and FWFTModes) timing diagram.

FIFO WRITE/READ OPERATION

The state of the PortA Aata (AO-A35) lines is controlled by PortAChipSelect ($\overline{\mathrm{CSA}}$) and Port A Write/Read select $(\mathrm{W} / \overline{\mathrm{R}} \mathrm{A})$. The A0-A35 lines are in the Highimpedance state when either $\overline{S S A}$ or W/ $\bar{R} A$ is HIGH. The AO-A35 lines are active outputs when both $\overline{C S A}$ and $W / \bar{R} A$ are LOW.
Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{\text { CSA }}$ is $L O W, W / \bar{R} A$ is HIGH, ENA is $\mathrm{HIGH}, \mathrm{MBA}$ is LOW, and FFAIIRA is HIGH. Data is read from FIFO2 to the A0-A35 outputs by a LOW-to-HIGH transition of CLKA when CSA is LOW, W/RA is LOW, ENA is HIGH, MBA is LOW, and EFA/ORA is HIGH (see Table 2). FIFO reads and writes on Port A are independent of any concurrent Port B operation.
The Port B control signals are identical to those of Port A with the exception that the Port BWrite/Read select ($\bar{W} / R B$) is the inverse of the Port A Write/Read select ($\mathrm{W} / \overline{\mathrm{R}} \mathrm{A}$). The state of the Port B data (BO -B35) lines is controlled by the PortBChip Select ($\overline{\mathrm{CSB}}$) and PortB Write/Read select ($\overline{\mathrm{W}} /$

TABLE 4 - FIF01 FLAG OPERATION (IDT Standard and FWFT modes)

Number of Words in FIFO Memory ${ }^{(1,2)}$			Synchronized to CLKB		Synchronized to CLKA	
IDT723654 ${ }^{(3)}$	IDT723664 ${ }^{(3)}$	IDT723674 ${ }^{(3)}$	EFB/ORB	$\overline{\text { AEB }}$	$\overline{\text { AFA }}$	$\overline{\text { FFA/IRA }}$
0	0	0	L	L	H	H
1 to X1	1 to X1	1 to X1	H	L	H	H
(X1+1) to [2,048-(Y1+1)]	(X1+1) to [4,096-(Y1+1)]	(X1+1) to [8,192-(Y1+1)]	H	H	H	H
(2,048-Y1)to2,047	(4,096-Y1)to 4,095	(8,192-Y1) to 8,191	H	H	L	H
2,048	4,096	8,192	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X 1 is the Almost-Empty offset for FIFO1 used by $\overline{\mathrm{AEB}}$. Y 1 is the AImost-Full offset for FIFO1 used by $\overline{\mathrm{AFA}}$. Both $\mathrm{X1}$ and Y 1 are selected during a FIFO1 reset or port A programming.
4. The ORB and IRA functions are active during FWFT mode; the EFB and FFA functions are active in IDT Standard mode.

TABLE 5 - FIFO2 FLAG OPERATION (IDT Standard and FWFT modes)

Number of Words in FIFO Memory ${ }^{(1,2)}$			Synchronized to CLKA		Synchronized to CLKB	
IDT723654 ${ }^{(3)}$	IDT723664 ${ }^{(3)}$	IDT723674 ${ }^{(3)}$	EFA/ORA	$\overline{\text { AEA }}$	$\overline{\text { AFB }}$	$\overline{\text { FFB/IRB }}$
0	0	0	L	L	H	H
1 to X2	1 to X2	1 to X2	H	L	H	H
(X2+1) to [2,048-(Y2+1)]	(X2+1) to [4,096-(Y2+1)]	(X2+1) to [8,192-(Y2+1)]	H	H	H	H
(2,048-Y2) to 2,047	(4,096-Y2) to 4,095	(8,192-Y2) to 8,191	H	H	L	H
2,048	4,096	8,192	H	H	L	L

NOTES:

1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the FIFO memory count.
3. X2 is the Almost-Empty offset for FIFO2 used by $\overline{\mathrm{EEA}}$. Y2 is the Almost-Full offset for FIFO2 used by $\overline{\mathrm{AFB}}$. Both X2 and Y2 are selected during a FIFO2 reset or port A programming.
4. The ORA and IRB functions are active during FWFT mode; the EFA and FFB functions are active in IDT Standard mode.

RB). The $B 0-B 35$ lines are in the high-impedance state when either $\overline{C S B}$ is HIGH or $\bar{W} / R B$ is LOW. The BO-B35 lines are active outputs when $\overline{\mathrm{CSB}}$ is LOW and $\bar{W} / R B$ is HIGH.
Data is loaded into FIFO2 from the B0-B35 inputs on a LOW-to-HIGH transition of CLKB when $\overline{C S B}$ is LOW, $\bar{W} / R B$ is LOW, ENB is HIGH, MBB is LOW, and $\overline{F F B} / I R B$ is HIGH. Data is read from FIFO1 to the BO-B35 outputs byaLOW-to-HIGHtransition of CLKB when $\overline{\text { SSB }}$ isLOW, $\bar{W} /$ RB is HIGH, ENB is HIGH, MBB is LOW, and EFB/ORB is HIGH (see Table 3). FIFO reads and writes on Port B are independent of any concurrent Port A operation.

The setup and holdtime constraints tothe portclocks fortheportChipSelects and Write/Read selects are only for enabling write and read operations and are not relatedto high-impedance control of the data outputs. If a portenable is LOWduring a clock cycle, the port's ChipSelectand Write/Readselectmay change states during the setup and hold time window of the cycle.

Whenoperatingthe FIFO in FWFT mode andtheOutputReady flagis LOW, the nextword written is automatically senttothe FIFO's output register by the LOW-to-HIGHtransition ofthe portclockthatsetstheOutput ReadyflagHIGH.

Whenthe OutputReady flagis HIGH, subsequentdata is clockedtothe output registers only when a read is selected using the port's ChipSelect, Write/Read select, Enable, and Mailboxselect.
When operating the FIFO in IDT Standard mode, the first word will cause the Empty Flagto change state on the second LOW-to-HIGH transition of the Read Clock. The data word will notbe automatically senttothe outputregister. Instead, data residing in the FIFO's memory array is clocked to the output register only when a read is selected using the port's Chip Select, Write/Read select, Enable, and Mailbox select. Write and read timing diagrams for Port A can be found in Figure 7 and 14 . Relevant Port B write and read cycle timing diagrams together with Bus-Matching and Endian select operations can be found in Figures 8 through 13.

SYNCHRONIZED FIFO FLAGS

Each FIFO is synchronized to its port clock through at least two flip-flop stages. This is donetoimprove flag-signal reliability by reducingthe probability of metastable events when CLKA andCLKB operate asynchronously to one
another. $\overline{\overline{F A}} / O R A, \overline{A E A}, \overline{F F A} / I R A$, and $\overline{\text { AFA }}$ are synchronized to CLKA. $\overline{\mathrm{EFB}} / \mathrm{ORB}, \overline{\mathrm{AEB}}, \overline{\mathrm{FFB}} / / \mathrm{RB}$, and $\overline{\mathrm{AFB}}$ are synchronizedto CLKB. Tables 4 and 5 show the relationship of each port flag to FIFO1 and FIFO2.

EMPTY/OUTPUTREADYFLAGS(EFA/ORA, $\overline{E F B} / O R B)$

These are dual purposeflags. Inthe FWFT mode, the Output Ready (ORA, ORB) function is selected. When the Output-Ready flag is HIGH, new data is presentinthe FIFO output register. Whenthe Output Ready flag is LOW, the previous data word is present inthe FIFO output register and attempted FIFO reads are ignored.

In the IDTStandardmode, the Empty Flag ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}$) function is selected. When the Empty Flag is HIGH, data is available in the FIFO's RAM memory for reading to the output register. Whenthe Empty Flagis LOW, the previous data word is presentinthe FIFO output register and attempted FIFO reads are ignored.

The Empty/Output Ready flag of a FIFO is synchronized to the portclock that reads data from its array. For boththe FWFT and IDT Standard modes, the FIFO read pointer is incremented each time a new word is clocked to its outputregister. The state machine that controls an Output Ready flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is empty, empty +1 , orempty +2 .
In FWFT mode, from the time a word is written to a FIFO, it can be shifted to the FIFO output register in a minimum of three cycles of the Output Ready flag synchronizing clock. Therefore, an Output Ready flag is LOW if a word inmemory isthe nextdatato be senttothe FIFO outputregister and three cycles ofthe portClockthatreads datafromthe FIFO have notelapsed since the time the word was written. The Output Ready flag of the FIFO remains LOW until the third LOW-to-HIGH transition of the synchronizing clock occurs, simultaneously forcing the Output Ready flag HIGH and shifting the word to the FIFO outputregister.

InIDTStandard mode, from the time a word is written to a FIFO, the Empty Flag will indicate the presence of data available for reading in a minimum of two cycles of the Empty Flag synchronizing clock. Therefore, an Empty Flag is LOW ifa word inmemory is the nextdatato be senttothe FIFO outputregister andtwo cycles ofthe portClockthatreads datafromthe FIFO have notelapsed since the time the word was written. The Empty Flag of the FIFO remains LOW until the second LOW-to-HIGH transition of the synchronizing clock occurs, forcing the Empty Flag HIGH; only then can data be read.
ALOW-to-HIGH transition on an Empty/Output Readyflag synchronizing clockbegins the firstsynchronization cycle of a writeifthe clocktransition occurs attimetSKEW1 or greater afterthe write. Otherwise, the subsequentclockcycle can be the first synchronization cycle (see Figures 15, 16, 17, and 18).

FULL/INPUT READY FLAGS ($\overline{\text { FFAIIIRA, }} \overline{\text { FFB/IRB) }}$

This is adual purpose flag. In FWFT mode, the Input Ready (IRA and IRB) function is selected. In IDT Standard mode, the Full Flag (FFA and FFB) function is selected. Forboth timing modes, when the Full/Input Ready flag is HIGH, a memory location is free inthe FIFO to receive new data. No memory locations are free when the Full/Input Ready flag is LOW and attempted writes to the FIFO are ignored.

The Full/Input Ready flag of a FIFO is synchronized to the port clock that writes data to its array. For both FWFT and IDT Standard modes, each time a word is writtento a FIFO, its write pointer is incremented. The state machine that controls a Full/Input Ready flag monitors a write pointer and read pointer comparator thatindicates when the FIFO memory status is full, full-1, orfull-2. Fromthe time a word is readfrom aFIFO, its previous memory location is ready to be written to in a minimum of two cycles of the Full/Input Ready flag synchronizing clock. Therefore, an Full/Input Ready flag is LOW ifless than
two cycles ofthe Full/lnputReady flag synchronizing clockhave elapsed since the next memory write location has been read. The second LOW-to-HIGH transition on the Full/Input Ready flag synchronizing clock afterthe read sets the Full/Input Ready flag HIGH.
ALOW-to-HIGH transition on a Full/Input Ready flag synchronizing clock begins the firstsynchronization cycle of a read ifthe clocktransition occurs at timetSKEW1 or greater after the read. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figures 19, 20, 21, and 22).

ALMOST-EMPTYFLAGS ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}})$

The Almost-Empty flag of aFIFO is synchronizedtothe portclockthatreads data from its array. The state machine that controls an Almost-Empty flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , oralmost-empty +2 . The almost-empty state is defined by the contents of register X 1 for $\overline{\mathrm{AEB}}$ and register X2 for $\overline{A E A}$. These registers are loaded with preset values during a FIFO reset, programmed from PortA, or programmed serially (see AlmostEmpty flag and Almost-Full flag offset programming section). An AlmostEmptyflagis LOW when itsFIFO contains X orless words and is HIGH when its FIFO contains ($\mathrm{X}+1$) or more words. A data word presentinthe FIFO output register has been read from memory.
TwoLOW-to-HIGHtransitions ofthe Almost-Emptyflagsynchronizing clock are requiredafter aFIFO writeforits Almost-Empty flagto reflect the newlevel offill. Therefore, the Almost-Full flag of a FIFO containing $(X+1)$ ormore words remains LOW iftwo cycles of its synchronizing clock have notelapsed since the write thatfilled the memory to the ($\mathrm{X}+1$) level. An Almost-Empty flagis set HIGH by the second LOW-to-HIGHtransition of its synchronizing clock after the FIFO write that fills memory to the $(\mathrm{X}+1)$ level. A LOW-to-HIGH transition of an Almost-Empty flag synchronizing clockbegins the firstsynchronization cycle if it occurs at time tskEw2 or greater after the write that fills the FIFO to (X+1) words. Otherwise, the subsequent synchronizing clock cycle may be the first synchronization cycle. (See Figure 23 and 24).

ALMOST-FULL FLAGS ($\overline{\mathrm{AFFA}}, \overline{\mathrm{AFB}}$)

The Almost-Full flag of a FIFO is synchronized to the portclock that writes datato its array. The state machine that controls an Almost-Full flag monitors a write pointer and read pointer comparator that indicates when the FIFO memorystatus is almost-full, almost-full-1, oralmost-full-2. The almost-full state is defined by the contents of registerY1 for $\overline{A F A}$ and register Y2for AFB. These registers are loaded with presetvalues during aFIFO reset, programmedfrom PortA, or programmed serially (see Almost-Empty flag and Almost-Full flag offsetprogrammingsection). An Almost-Full flagis LOW when the number of words in its FIFO is greaterthan or equal to (2,048-Y), (4,096-Y), or ($8,192-\mathrm{Y}$) for the IDT723654, IDT723664, or IDT723674 respectively. An Almost-Full flag is HIGH when the number of words in its FIFO is less than or equal to $[2,048-(\mathrm{Y}+1)],[4,096-(\mathrm{Y}+1)]$, or $[8,192-(\mathrm{Y}+1)]$ forthe IDT723654, IDT723664, orIDT723674 respectively. Note that a data word present in the FIFO output register has been read from memory.
Two LOW-to-HIGH transitions of the Almost-Full flag synchronizing clock are required aftera FIFO read for its Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Full flag of a FIFO containing [2,048/4,096/8, 192$(\mathrm{Y}+1)]$ orless words remains LOW ittwo cycles of its synchronizing clock have not elapsed since the read that reduced the number of words in memory to [2,048/4,096/8,192-(Y+1)]. An Almost-Full flag is set HIGH by the second LOW-to-HIGH transition of its synchronizing clock after the FIFO read that reduces the number of words in memory to $[2,048 / 4,096 / 8,192-(\mathrm{Y}+1)]$. A LOW-to-HIGHtransition of an Almost-Full flag synchronizing clock begins the first synchronization cycle if it occurs attime tskEw2 or greater after the read
that reduces the number of words in memory to $[2,048 / 4,096 / 8,192-(Y+1)]$. Otherwise, the subsequent synchronizing clock cycle may be the firstsynchronization cycle (see Figure 25 and 26).

MAILBOX REGISTERS

Each FIFO has a 36 -bit bypass register to pass command and control information between PortA and PortB without puttingitinqueue. The Mailbox select (MBA, MBB) inputs choose between a mail register and a FIFO for a port data transfer operation. The usable width of both the Mail1 and Mail2 registers matches the selected bus size for Port B.

ALOW-to-HIGH transition onCLKA writes datatothe Mail 1 Registerwhen a Port A write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. If the selected PortB bus size isalso36bits, then the usable width of the Maill register employs data lines AO-A35. If the selected PortB bus size is 18bits, then the usable width of the Mail1 Register employs data lines A0-A17. (Inthis case, A18-A35 are don't care inputs.) If the selected Port B bus size is 9 bits, then the usable width of the Mail1 Register employs data lines AO-A8. (Inthis case, A9-A35 are don't care inputs.)

ALOW-to-HIGHtransition onCLKB writes BO-B35datatotheMail2 Register when a Port B write is selected by $\overline{C S B}, \bar{W} / R B$, and $E N B$ with MBB HIGH. If the selected Port B bus size is also 36 bits, then the usable width of the Mail2 employs data lines BO-B35. If the selected PortB bus size is 18 bits, then the usable width of the Mail2 Register employs data lines B0-B17. (In this case, B18-B35 are don't care inputs.) If the selected Port B bus size is 9 bits, then the usable width of the Mail2 Register employs data lines $B 0$ - 88 . (Inthis case, B9-B35 are don't care inputs.)
Writing datato a mail register sets its corresponding flag (MBF1 or $\overline{\mathrm{MBF}}$) LOW. Attempted writesto a mail register are ignored while the mail flag is LOW.

When data outputs of a portare active, the data on the bus comes from the FIFO output register when the portMailbox select inputis LOW and from the mail register when the port Mailbox select input is HIGH.
The Mail1 Register Flag (MBF1) is setHIGH by a LOW-to-HIGHtransition on CLKB when a Port B read is selected by $\overline{C S B}, \bar{W} / R B$, and $E N B$ with $M B B$ HIGH. For a 36 -bit bus size, 36 bits of mailbox data are placed on BO-B35. For an 18 -bitbus size, 18 bits of mailbox data are placed on BO-B17. (Inthis case, B18-B35 are indeterminate.) For 99-bitbus size, 9 bits of mailboxdata are placed on $\mathrm{B0} 0-\mathrm{B8}$. (In this case, B9-B35 are indeterminate.)

The Mail2 Register Flag(MBF2) is setHIGH by a LOW-to-HIGH transition on CLKA when a Port A read is selected by $\overline{C S A}, W / \bar{R} A$, and $E N A$ with MBA HIGH.

For a 36 -bit bus size, 36 bits of mailbox data are placed on AO-A35. For an 18 -bitbus size, 18 bits of mailboxdata are placed on AO-A17. (Inthis case, A18-A35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data are placed on AO-A8. (In this case, A9-A35 are indeterminate.)

The data in a mail register remains intact after itis read and changes only when new data is writtentothe register. The Endian selectfeature has no effect on mailboxdata. For mail registerand Mail RegisterFlagtiming diagrams, see Figure 27 and 28.

BUS SIZING

The Port B bus can be configured in a 36 -bit long word, 18 -bit word, or 9 bit byte format for data read from FIFO1 or written to FIFO2. The levels applied to the Port B Bus Size select (SIZE) and the Bus-Match select (BM) determine the PortBbus size. These levels should be static throughout FIFO operation. Both bus size selections are implemented at the completion of Master Reset, by the time the Full/Input Ready flag is setHIGH, as shown in Figure 2.
Two different methods for sequencing datatransfer are available for Port B when the bus size selection is either byte-or word-size. They are referred to as Big-Endian (mostsignificant byte first) and Little-Endian (leastsignificant bytefirst). The level appliedtothe Big-Endianselect(BE) inputduringthe LOW-to-HIGH transition of $\overline{\text { MRS1 }}$ and $\overline{\text { MRS2 }}$ selects the endian method that will be active during FIFO operation. BE is a don't care input when the bus size selected for Port B is long word. The endian method is implemented at the completion of Master Reset, by the time the Full/Input Ready flag is setHIGH, as shown in Figure 2.
Only 36 -bitlong word data is writtento or read from the two FIFO memories onthe IDT723654/723664/723674. Bus-matching operations are done after datais read from the FIFO1 RAM and before datais writtentothe FIFO2RAM. These bus-matching operations are not available when transferring data via mailbox registers. Furthermore, both the word- and byte-size bus selections limit the width of the data bus that can be used for mail register operations. In this case, only those byte lanes belonging to the selected word- or byte-size bus can carry mailbox data. The remaining data outputs will be indeterminate. The remaining data inputs will be don'tcare inputs. Forexample, when a wordsize bus is selected, then mailbox data can be transmitted only between AOA17 and B0-B17. When abyte-size bus is selected, then mailbox data can be transmitted only between AO-A8 and B0-B8. (See Figures 27 and 28).

BUS-MATCHING FIFO1 READS

Datais read from the FIFO1 RAM in 36-bit long word increments. If along word bus size is implemented, the entire long word immediately shifts to the FIFO1 output register. If byte or word size is implemented on Port B, only the firstoneortwo bytes appearonthe selected portion of the FIFO1 outputregister, with the rest of the long word stored in auxiliary registers. In this case, subsequentFIFO1 reads output the rest of the long word to the FIFO1 output register in the order shown by Figure 2.
When reading datafrom FIFO1 in byte orword format, the unused BO-B35 outputs are indeterminate.

BUS-MATCHING FIFO2 WRITES

Dataiswrittentothe FIFO2RAM in 36-bitlongword increments. Datawritten to FIFO2 with abyte orword bus size stores the initial bytes orwords in auxiliary registers. The CLKB rising edge that writes the fourth byte or the second word of long word to FIFO2 also stores the entire long word in the FIFO2 memory. The bytes are arranged in the manner shown in Figure 2.
When writing datato FIFO2 in byteorwordformat, the unused B0-B35inputs are don't care inputs.

BYTE ORDER ON PORT A:

Write to FIFO1/ Read from FIFO2

BYTE ORDER ON PORT B:

BE	BM	SIZE
X	L	X

(a) LONG WORD SIZE

BE	BM	SIZE
\mathbf{H}	\mathbf{H}	L

(b) WORD SIZE — BIG ENDIAN

BE	BM	SIZE
L	H	L

(c) WORD SIZE - LITTLE-ENDIAN

BE	BM	SIZE
\mathbf{H}	\mathbf{H}	\mathbf{H}

B17-B9

B26-B18

B17-B9

4th: Read from FIFO1/ Write to FIFO2
(d) BYTE SIZE —BIG-ENDIAN

BE	BM	SIZE
L	H	H

B35-B27

B35-B27

B17-B9

4th: Read from FIFO1/ Write to FIFO2

Figure 2. Bus Sizing

NOTES:

1. FIFO2 Master Reset $\overline{(\overline{\mathrm{MRS} 2})}$ is performed in the same manner to load X 2 and Y 2 with a preset value. For FIFO2 Master Reset, $\overline{\mathrm{MRS} 1}$ must toggle simultaneously with $\overline{\mathrm{MRS} 2}$.
2. PRS1 must be HIGH during Master Reset.
3. If $B E / \overline{F W F T}$ is HIGH, then $\overline{E F B} / O R B$ will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.

Figure 3. FIFO1 Master Reset and Loading X1 and Y1 with a Preset Value of Eight ${ }^{(1)}$ (IDT Standard and FWFT Modes)

NOTES:

1. Partial Reset is performed in the same manner for FIFO2.
2. MRS1 must be HIGH during Partial Reset.
3. If $B E / \overline{F W F T}$ is HIGH , then $\overline{\mathrm{EFB}} / \mathrm{ORB}$ will go LOW one CLKB cycle earlier than in this case where $B E / \overline{\mathrm{FWFT}}$ is LOW.

Figure 4. FIF01 Partial Reset ${ }^{(1)}$ (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKB edge for $\overline{F F B} / I R B$ to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising edge of CLKB is less than tskEw1, then $\overline{\mathrm{FFB}} /$ IRB may transition HIGH one CLKB cycle later than shown.
2. $\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W$. It is not necessary to program offset register on consecutive clock cycles.

Figure 5. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)

NOTES:

1. tSKEw 1 is the minimum time between the rising CLKA edge and a rising CLKB edge for $\overline{F F B} / I R B$ to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising edge of CLKB is less than tskEw1, then $\overline{F F B} /$ IRB may transition HIGH one CLKB cycle later than shown.
2. It is not necessary to program offset register bits on consecutive clock cycles. FIFO write attempts are ignored until $\overline{\mathrm{FFA}} / \mathrm{IRA}$ and $\overline{\mathrm{FFB}} / \mathrm{IRB}$ is set HIGH .
3. Programmable offsets are written serially to the SD input in the order $\overline{\mathrm{AFA}}$ offset (Y1), $\overline{\mathrm{AEB}}$ offset (X1), $\overline{\mathrm{AFB}}$ offset (Y2), and $\overline{\mathrm{AEA}}$ offset (X2).

Figure 6. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values (IDT Standard and FWFT Modes)

NOTE:

1. Written to FIFO1.

Figure 7. Port A Write Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)

NOTE:

1. Written to FIFO2.

DATA SIZE TABLE FOR LONG-WORD WRITES TO FIFO2

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO2				DATA READ FROM FIFO2			
BM	SIZE	BE	B35-B27	B26-B18	B17-B9	B8-B0	A35-A27	A26-A18	A17-A9	A8-A0
L	X	X	A	B	C	D	A	B	C	D

NOTE:

1. $B E$ is selected at Master Reset: BM and SIZE must be static throughout device operation.

Figure 8. Port B Long-Word Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

DATA SIZE TABLE FOR WORD WRITES TO FIFO2

SIZE MODE ${ }^{(1)}$			WRITE NO.	DATA WRITTEN TO FIFO2		DATA READ FROM FIFO2			
BM	SIZE	BE		B17-B9	B8-B0	A35-A27	A26-A18	A17-A9	A8-A0
H	L	H	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \\ & \hline \end{aligned}$	A	B	C	D
H	L	L	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline D \\ & B \end{aligned}$	A	B	C	D

NOTE:

1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation.

Figure 9. Port B Word Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

DATA SIZE TABLE FOR BYTE WRITES TO FIFO2

SIZE MODE ${ }^{(1)}$			WRITE NO.	DATA WRITTEN TO FIFO2 B8-B0	DATA READ FROM FIFO2			
BM	SIZE	BE			A35-A27	A26-A18	A17-A9	A8-A0
H	H	H	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	A	B	C	D
H	H	L	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	A	B	C	D

NOTE:

1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation.

Figure 10. Port B Byte Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

NOTE:

1. Read From FIFO1.

DATA SIZE TABLE FOR FIFO LONG-WORD READS FROM FIF01

SIZ MODE $^{(1)}$			DATA WRITTEN TO FIFO1				DATA READ FROM FIFO1			
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0	B35-B27	B26-B18	B17-B9	B8-B0
L	X	X	A	B	C	D	A	B	C	D

NOTE:

1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation .

Figure 11. Port B Long-Word Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)

NOTE:

1. Unused word B18-B35 are indeterminate for word-size reads.

DATA SIZE TABLE FOR WORD READS FROM FIF01

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO1				READ NO.	DATA READ FROM FIFO1	
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		B17-B9	B8-B0
H	L	H	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & B \\ & D \\ & \hline \end{aligned}$
H	L	L	A	B	C	D	1	C	D

NOTE:

1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation

Figure 12. Port-B Word Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)

NOTE:

1. Unused bytes B9-B17, B18-B26, and B27-B35 are indeterminate for byte-size reads.

DATA SIZE TABLE FOR BYTE READS FROM FIFO1

SIZE MODE ${ }^{(1)}$			DATA WRITTEN TO FIFO1				READ NO.	$\begin{gathered} \hline \text { DATA READ } \\ \text { FROM FIFO1 } \\ \hline \text { B8-B0 } \end{gathered}$
BM	SIZE	BE	A35-A27	A26-A18	A17-A9	A8-A0		
H	H	H	A	B	C	D	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
H	H	L	A	B	C	D	1 2 3 4	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$

NOTE:

1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation.

Figure 13. Port-B Byte Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)

NOTE:

1. Read From FIFO2.

Figure 14. Port-A Read Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)

NOTES:

1. tSkEw is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEW1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, ORB is set LOW by the last word or byte read from FIFO1, respectively.

Figure 15. ORB Flag Timing and First Data Word Fall Through when FIFO1 is Empty (FWFT Mode)

NOTES:

1. tskEw is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew, then the transition of EFB HIGH may occur one CLKB cycle later than shown.
2. If Port B size is word or byte, $\overline{\mathrm{EFB}}$ is set LOW by the last word or byte read from FIFO1, respectively.

Figure 16. EFB Flag Timing and First Data Read Fall Through when FIFO1 is Empty (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output register in three CLKA cycles. If the time between the CLKB edge and the rising CLKA edge is less than tskEw1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA cycle later than shown.
2. If Port B size is word or byte, tsKEW1 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.

Figure 17. ORA Flag Timing and First Data Word Fall through when FIFO2 is Empty (FWFT Mode)

NOTES:

1. tSKEw1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising

CLKA edge is less than tsKEW1, then the transition of $\overline{E F A}$ HIGH may occur one CLKA cycle later than shown.
2. If Port B size is word or byte, tsKEW1 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.

Figure 18. EFA Flag Timing and First Data Read when FIFO2 is Empty (IDT Standard Mode)

NOTES:

1. tSkEw is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tSKEW1, then IRA may transition HIGH one CLKA cycle later than shown.
2. If Port B size is word or byte, tSKEW1 is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively.

Figure 19. IRA Flag Timing and First Available Write when FIFO1 is Full (FWFT Mode)

Figure 20. $\overline{\text { FFA }}$ Flag Timing and First Available Write when FIFO1 is Full (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw1, then IRB may transition HIGH one CLKB cycle later than shown.
2. If Port B size is word or byte, IRB is set LOW by the last word or byte write of the long word, respectively.

Figure 21. IRB Flag Timing and First Available Write when FIFO2 is Full (FWFT Mode)

NOTES:

1. tsKEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{F F B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw1, then $\overline{F F B}$ may transition HIGH one CLKB cycle later than shown.
2. If Port B size is word or byte, $\overline{F F B}$ is set LOW by the last word or byte write of the long word, respectively.

Figure 22. $\overline{\text { FFB }}$ Flag Timing and First Available Write when FIFO2 is Full (IDT Standard Mode)

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{A E B}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw2, then $\overline{\text { AEB }}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO1 Write $(\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$, FIFO1 read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO1 output register has been read from the FIFO. 3. If Port B size is word or byte, $\overline{A E B}$ is set LOW by the last word or byte read from FIFO1, respectively.

Figure 23. Timing for $\overline{A E B}$ when FIFO1 is Almost-Empty (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{AEA}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tSKEw2, then $\overline{\mathrm{AEA}}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO2 Write $(\overline{C S B}=L O W, \bar{W} / R B=L O W, M B B=L O W), ~ F I F O 2$ read $(\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$. Data in the FIFO2 output register has been read from the FIFO.
3. If Port B size is word or byte, tskew2 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.

Figure 24. Timing for $\overline{A E A}$ when FIFO2 is Almost-Empty (IDT Standard and FWFT Modes)

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AFA}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskewz, then $\overline{\text { AFA }}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO1 Write ($\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W)$, FIFO1 read ($\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$. Data in the FIFO1 output register has been read from the FIFO.
3. $D=$ Maximum FIFO Depth $=2,048$ for the IDT723654, 4,096 for the IDT723664, 8,192 for the IDT723674.
4. If Port B size is word or byte, tsKEw2 is referenced to the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 25. Timing for $\overline{A F A}$ when FIFO1 is Almost-Full (IDT Standard and FWFT Modes)

NOTES:

1. tSKEw2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{AFB}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tsKEw2, then $\overline{A F B}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO2 write $(\overline{C S B}=L O W, \bar{W} / R B=L O W, M B B=L O W), F I F O 2$ read $(\overline{C S A}=L O W, W / \bar{R} A=L O W, M B A=L O W)$. Data in the FIFO2 output register has been read from the FIFO.
3. $\mathrm{D}=$ Maximum FIFO Depth $=2,048$ for the IDT723654, 4,096 for the IDT723664, 8,192 for the IDT723674.
4. If Port B size is word or byte, $\overline{\mathrm{AFB}}$ is set LOW by the last word or byte write of the long word, respectively.

Figure 26. Timing for $\overline{A F B}$ when FIFO2 is Almost-Full (IDT Standard and FWFT Modes)

NOTE:

1. If Port B is configured for word size, data can be written to the Mail1 register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data (B18-B35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail1 Register using A0-A8 (A9-A35 are don't care inputs). In this second case, B0-B8 will have valid data (B9-B35 will be indeterminate).

Figure 27. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag (IDT Standard and FWFT Modes)

NOTE:

1. If Port B is configured for word size, data can be written to the Mail2 Register using B0-B17 (B18-B35 are don't care inputs). In this first case A0-A17 will have valid data (A18-A35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail2 Register using B0-B8 (B9-B35 are don't care inputs). In this second case, A0-A8 will have valid data (A9-A35 will be indeterminate).

Figure 28. Timing for Mail2 Register and $\overline{M B F 2}$ Flag (IDT Standard and FWFT Modes)

NOTES:

1. $\overline{\mathrm{CSB}}=\mathrm{LOW}$
2. Retransmit setup is complete after $\overline{\mathrm{EFB}}$ returns HIGH, only then can a read operation begin.
3. W1 = first word written to the FIFO1 after Master Reset on FIFO1.
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO1 (Master or Partial) and Retransmit setup. Therefore, $\overline{\text { FFA }}$ will be LOW throughout the Retransmitsetup procedure. $D=2,048,4,096$ and 8,192 for the IDT723654, IDT723664 and IDT723674 respectively.

Figure 29. Retransmit Timing for FIFO1 (IDT Standard Mode)

NOTES:

1. $\overline{C S A}=$ LOW
2. Retransmit setup is complete after $\overline{\mathrm{EFA}}$ returns HIGH, only then can a read operation begin.
3. W1 = first word written to the FIFO1 after Master Reset on FIFO2.
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO2 (Master or Partial) and Retransmit setup. Therefore, FFB will be LOW throughout the Retransmit setup procedure. $D=2,048,4,096$ and 8,192 for the IDT723654, IDT723664 and IDT723674 respectively.

Figure 30. Retransmit Timing for FIFO2 (IDT Standard Mode)

NOTES:

1. $\overline{\mathrm{CSB}}=\mathrm{LOW}$
2. Retransmit setup is complete after $\overline{\mathrm{ORB}}$ returns HIGH , only then can a read operation begin.
3. W1 = first word written to the FIFO1 after Master Reset on FIFO1.
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO1 (Master or Partial) and Retransmit setup. Therefore, IRA will be LOW throughout the Retransmit setup procedure. $D=2,049,4,097$ and 8,193 for the IDT723654, IDT723664 and IDT723674 respectively.

Figure 31. Retransmit Timing for FIFO1 (FWFT Mode)

NOTES:

1. $\overline{C S A}=L O W$
2. Retransmit setup is complete after $\overline{\text { ORA }}$ returns HIGH, only then can a read operation begin.
3. W1 = first word written to the FIFO2 after Master Reset on FIFO2.
4. No more than D-2 may be written to the FIFO2 between Reset of FIFO2 (Master or Partial) and Retransmit setup. Therefore, IRB will be LOW throughout the Retransmit setup procedure. $D=2,049,4,097$ and 8,193 for the IDT723654, IDT723664 and IDT723674 respectively.

Figure 32. Retransmit Timing for FIFO2 (FWFT Mode)

PARAMETER MEASUREMENT INFORMATION

NOTE:

1. Includes probe and jig capacitance.

Figure 33. Output Load and AC Test Conditions

ORDERING INFORMATION

NOTE:

1. Industrial temperature range is available by special order.

DATASHEET DOCUMENT HISTORY

$12 / 20 / 2000$	pg. 13
$02 / 09 / 2001$	pgs. 5 and 12.
$03 / 21 / 2001$	pgs. 7 and 8.
$08 / 01 / 2001$	pgs. $7,9,10$ and 37.
$11 / 03 / 2003$	pg. 1.

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054

