

Document Title

32K x 8 High Speed SRAM

Revision History

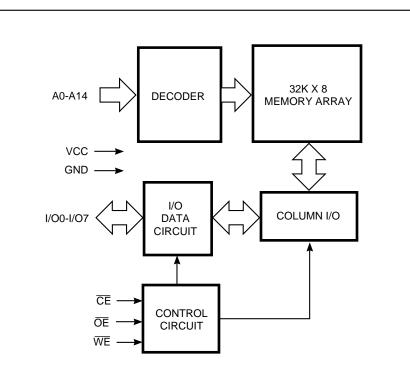
Revision No	History	Draft Date Remark
0A	Initial Draft	March 23,2001
0B	Revise typo of tha on page 7	October 18,2001
0C	Add SOP package type	February 18,2002
0D	Revise typo of sop size at page 2,9	April 19,2002

The attached datasheets are provided by ICSI. Integrated Circuit Solution Inc reserve the right to change the specifications and products. ICSI will answer to your questions about device. If you have any questions, please contact the ICSI offices.

32K x 8 HIGH-SPEED CMOS STATIC RAM

FEATURES

- High-speed access times: 10, 12, 15, 20, 25 ns
- Low active power: 400 mW (typical)
- · Low standby power
 - -- 250 µW (typical) CMOS standby
 - -- 55 mW (typical) TTL standby
- Fully static operation: no clock or refresh required
- TTL compatible interface and outputs
- Single 5V power supply


DESCRIPTION

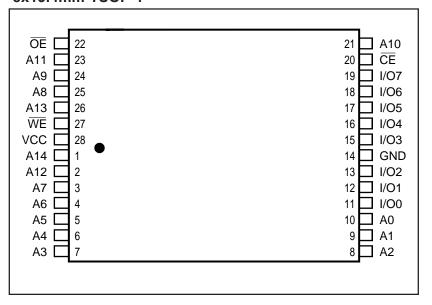
The ICSI IC61C256AH is very high-speed, low power, 32,768 word by 8-bit static RAMs. They are fabricated using ICSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 8 ns maximum.

When \overline{CE} is HIGH (deselected), the device assumes a standby mode at which the power dissipation is reduced to 50 μ W (typical) with CMOS input levels.

Easy memory expansion is provided by using an active LOW Chip Enable (\overline{CE}). The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

The IC61C256AH is pin compatible with other 32k x 8 SRAMs and are available in 28-pin 300mil PDIP, 300mil SOJ, and 8*13.4mm TSOP-1 package, 330 mil SOP.

FUNCTIONAL BLOCK DIAGRAM


ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

PIN CONFIGURATION 28-Pin DIP and SOJ and SOP

	— 0 —	
A14 🗌	1	28 🛛 VCC
A12	2	27 🗌 👿 🗉
A7 🗌	3	26 🗌 A13
A6 🗌	4	25 🗋 A8
A5 🗌	5	24 🗋 A9
A4 🗌	6	23 🗋 A11
A3 🗌	7	22 🛛 OE
A2 🗌	8	21 🗋 A10
A1 [9	20 🗋 CE
A0 🗌	10	19 🛛 1/07
I/O0 [11	18 🗌 I/O6
I/O1 [12	17 🗍 1/05
I/O2 [13	16 🗍 1/04
GND	14	15 🛛 I/O3
•		

PIN CONFIGURATION 8x13.4mm TSOP-1

PIN DESCRIPTIONS

A0-A14	Address Inputs
CE	Chip Enable Input
OE	Output Enable Input
WE	Write Enable Input
I/00-I/07	Input/Output
Vcc	Power
GND	Ground

TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	Vcc Current
Not Selected (Power-down)	Х	Н	Х	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	lcc1,lcc2
Read	Н	L	L	Dout	lcc1, lcc2
Write	L	L	Х	Din	Icc1, Icc2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
PD	Power Dissipation	1.5	W
Ιουτ	DC Output Current (LOW)	20	mA

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Speed	Vcc
Commercial	0°C to +70°C	-10, -12	5V, ± 5%
		-15, -20	5V ± 10%
Industrial	–40°C to +85°C	-12	5V ± 5%
		-15, -20, -25	5V± 10%

Notes:

1. 8 ns is preliminary.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -4.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 8.0 mA		_	0.4	V
Vih	Input HIGH Voltage ⁽¹⁾			2.2	Vcc + 0.5	V
VIL	Input LOW Voltage ⁽²⁾			-0.5	0.8	V
Lu	Input Leakage	$GND \le V_{IN} \le V_{CC}$	Com. Ind.	5 10	5 10	μΑ
Ilo	Output Leakage	$GND \le VOUT \le Vcc,$ Outputs Disabled	Com. Ind.	5 10	5 10	μΑ

Notes:

1. VIH=Vcc +3.0V for pulse width less than 10ns.

2. VIL = -3.0V for pulse width less than 10 ns.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Sym.	Parameter	Test Conditions		-10 Min. Max.	-12 Min. Max.	-15 Min. Max.	-20 Min. Max.	-25 Min. Max.	Unit
Icc	Vcc Dynamic Operating Supply Current	Vcc = Max., \overline{CE} = VIL lout = 0 mA, f = fmax	Com. Ind.	— 145 — 180	— 135 — 170	— 125 — 160	— 120 — 150	— 120 — 140	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} = \mbox{Max.}, \\ \hline \mbox{Vin} = \mbox{ViH} \mbox{ or Vil} \\ \hline \mbox{CE} \geq \mbox{ViH}, \mbox{ f} = \mbox{0} \end{array}$	Com. Ind.	— 25 — 30	mA				
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:constraint} \begin{split} & \frac{V_{CC} = Max.,}{CE} \geq V_{CC} - 0.2V, \\ & V_{IN} \geq V_{CC} - 0.2V, \text{ or} \\ & V_{IN} \leq 0.2V, \text{ f} = 0 \end{split}$	Com. Ind.	— 2 — 10	mA				

Notes:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	8	pF
Соит	Output Capacitance	Vout = 0V	10	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, Vcc = 5V.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

	-	10		-12	-	15	-2	20	-/	25	
Symbol Parameter	Min.	Max.	Unit								
tRC Read Cycle Time	10	_	12	_	15	_	20	_	25	_	ns
taa Address Access Time	_	10	_	12	_	15	_	20	—	25	ns
toha Output Hold Time	2	_	2	_	2	_	2	_	2	_	ns
TACE CE Access Time	_	10	_	12	_	15	_	20	_	25	ns
TDOE OE Access Time	_	5	_	5	_	7	_	8	_	9	ns
TLZOE ⁽²⁾ OE to Low-Z Output	0	_	0	_	0	_	0	_	0	_	ns
THZOE ⁽²⁾ OE to High-Z Output	_	5	_	6	_	7	_	9	_	10	ns
TLZCE ⁽²⁾ CE to Low-Z Output	2	_	3	_	3	_	3	_	3	_	ns
THZCE ⁽²⁾ CE to High-Z Output	_	5	_	7	_	8	_	9	—	10	ns
TPU ⁽³⁾ CE to Power-Up	0	_	0	_	0	_	0	_	0	_	ns
TPD ⁽³⁾ CE to Power-Down	_	10	_	12		15	_	18	_	20	ns

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

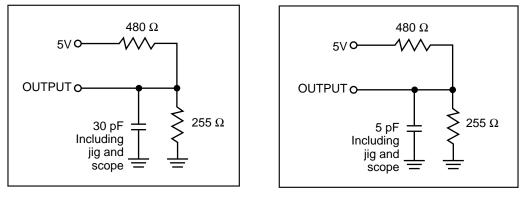
2. Tested with the load in Figure 2. Transition is measured ±200 mV from steady-state voltage. Not 100% tested.

3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS



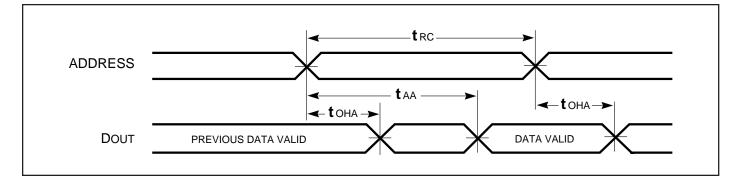
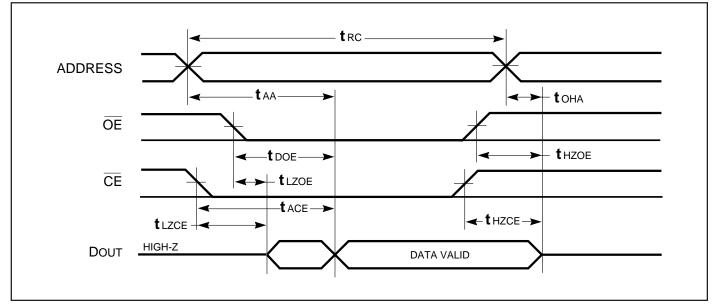

Figure 1.

Figure 2.



AC WAVEFORMS

READ CYCLE NO. 1(1,2)

READ CYCLE NO. 2^(1,3)

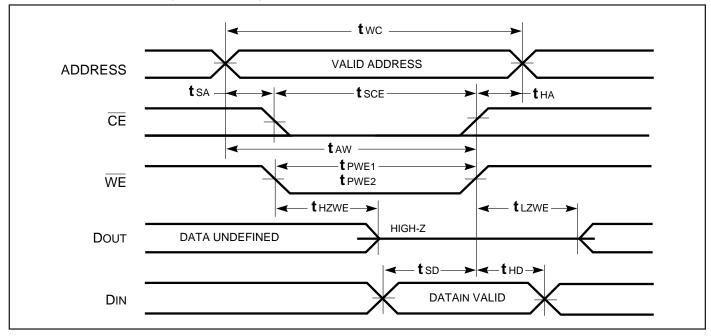
Notes:

- 1. WE is HIGH for a Read Cycle. 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with CE LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range)

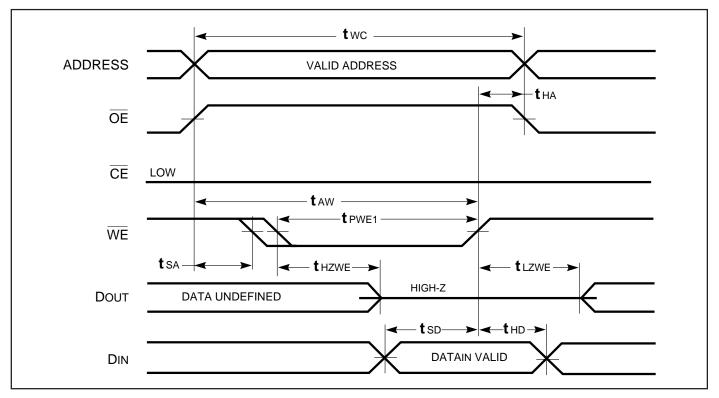
		-	10	-	12	-	15	-2	20	-2	25	
Symbol	Parameter	Min.	Max.	Unit								
twc	Write Cycle Time	10	_	12	_	15	—	20	_	25	—	ns
tsce	CE to Write End	9	_	10		10	_	13	_	15	_	ns
taw	Address Setup Time to Write End	9	_	10	_	12	_	15	_	20	_	ns
t ha	Address Hold from Write End	0	_	0	_	0	_	0	_	0	—	ns
t sa	Address Setup Time	0	_	0	_	0	_	0	_	0	_	ns
$t_{PWE^{(4)}}$	WE Pulse Width	8	_	8		10	_	13	_	15	_	ns
tsd	Data Setup to Write End	7	_	7	_	9	_	10	_	12	_	ns
t HD	Data Hold from Write End	0	—	0	_	0	—	0	—	0	_	ns
$t_{\text{HZWE}^{(2)}}$	WE LOW to High-Z Output	_	6	—	6	_	7	_	8	_	10	ns
t LZWE	WE HIGH to Low-Z Output	0	_	0	_	0	_	0	_	0	_	ns

Notes:


1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

 Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

4. Tested with OE HIGH.


AC WAVEFORMS

WRITE CYCLE NO. 1 (WE Controlled) (1,2)

WRITE CYCLE NO. 2 (CE Controlled) (1,2)

Notes:

1. The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

ORDERING INFORMATION: IC61C256AH

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
10	IC61C256AH-10N	300mil DIP
10	IC61C256AH-10J	300mil SOJ
10	IC61C256AH-10T	8*13.4mm TSOP-1
10	IC61C256AH-10U	330mil SOP
12	IC61C256AH-12N	300mil DIP
12	IC61C256AH-12J	300mil SOJ
12	IC61C256AH-12T	8*13.4mm TSOP-1
12	IC61C256AH-12U	330mil SOP
15	IC61C256AH-15N	300mil DIP
15	IC61C256AH-15J	300mil SOJ
15	IC61C256AH-15T	8*13.4mm TSOP-1
15	IC61C256AH-15U	330mil SOP
20	IC61C256AH-20N	300mil DIP
20	IC61C256AH-20J	300mil SOJ
20	IC61C256AH-20T	8*13.4mm TSOP-1
20	IC61C256AH-20U	330mil SOP

ORDERING INFORMATION:

IC61C256AH

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
12	IC61C256AH-12NI	300mil DIP
12	IC61C256AH-12JI	300mil SOJ
12	IC61C256AH-12TI	8*13.4mm TSOP-1
12	IC61C256AH-12UI	330mil SOP
15	IC61C256AH-15NI	300mil DIP
15	IC61C256AH-15JI	300mil SOJ
15	IC61C256AH-15TI	8*13.4mm TSOP-1
15	IC61C256AH-15UI	330mil SOP
20	IC61C256AH-20NI	300mil DIP
20	IC61C256AH-20JI	300mil SOJ
20	IC61C256AH-20TI	8*13.4mm TSOP-1
20	IC61C256AH-20UI	330mil SOP
25	IC61C256AH-25NI	300mil DIP
25	IC61C256AH-25JI	300mil SOJ
25	IC61C256AH-25TI	8*13.4mm TSOP-1
25	IC61C256AH-25UI	330mil SOP

Integrated Circuit Solution Inc.

HEADQUARTER: NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK, HSIN-CHU, TAIWAN, R.O.C. TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5[™] ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C. TEL: 886-2-26962140 FAX: 886-2-26962252 http://www.icsi.com.tw